IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Zhong, Y. Yuan, H. Yuan, M. Wang, and H. Liu, “Multi-spacecraft formation control under false data injection attack: A cross layer fuzzy game approach,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 4, pp. 776–788, Apr. 2025. doi: 10.1109/JAS.2024.124872 |
[1] |
T. Wang, M. Hu, and Y. Zhao, “Consensus control with a constant gain for discrete-time binary-valued multi-agent systems based on a projected empirical measure method,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 1052–1059, Jul. 2019. doi: 10.1109/JAS.2019.1911594
|
[2] |
D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, Feb. 2021. doi: 10.1109/JAS.2021.1003820
|
[3] |
A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards survivable cyber-physical systems,” in Proc. 28th Int. Conf. Distributed Computing Systems Workshops, Beijing, China, 2008, pp. 495–500.
|
[4] |
A.-Y. Lu and G.-H. Yang, “Distributed consensus control for multi-agent systems under denial-of-service,” Inf. Sci., vol. 439–440, pp. 95–107, May 2018. doi: 10.1016/j.ins.2018.02.008
|
[5] |
L. Sun, Y. Zhang, and C. Sun, “Stochastic denial-of-service attack allocation in leader-following multiagent systems,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 5, pp. 2848–2857, May. 2022. doi: 10.1109/TSMC.2021.3056227
|
[6] |
A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Computer, vol. 35, no. 10, pp. 54–62, Oct. 2002.
|
[7] |
D. Ding, Z. Wang, D. W. C. Ho, and G. Wei, “Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1936–1947, Aug. 2016.
|
[8] |
W. He, X. Gao, W. Zhong, and F, Qi an, “Secure impulsive synchronization control of multi-agent systems under deception attacks,” Inf. Sci., vol. 459, pp. 354–368, Aug. 2018. doi: 10.1016/j.ins.2018.04.020
|
[9] |
A. Mustafa and H. Modares, “Attack analysis and resilient control design for discrete-time distributed multi-agent systems,” IEEE Robot Autom. Lett., vol. 5, no. 2, pp. 369–376, Apr. 20120.
|
[10] |
R. Moghadam and H. Modares, “Resilient autonomous control of distributed multiagent systems in contested environments,” IEEE Trans. Cybern., vol. 49, no. 11, pp. 3957–3967, Nov. 2019. doi: 10.1109/TCYB.2018.2856089
|
[11] |
A. Mustafa, H. Modares, and R. Moghadam, “Resilient synchronization of distributed multi-agent systems under attacks,” Automatica, vol. 115, p. 108869, May 2020. doi: 10.1016/j.automatica.2020.108869
|
[12] |
Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection attacks against state estimation in wireless sensor networks,” in Proc. 49th IEEE Conf. Decision and Control, Atlanta, GA, USA, 2010, pp. 5967–5972.
|
[13] |
L. Xie, Y. Mo, and B. Sinopoli, “False data injection attacks in electricity markets,” in Proc. First IEEE Int. Conf. Smart Grid Communications, Gaithersburg, MD, USA, 2020, pp. 226–231.
|
[14] |
M. Zuba, Z. Shi, Z. Peng, and J.-H. Cui, “Launching denial-of-service jamming attacks in underwater sensor networks,” in Proc. 6th Int. Workshop on Underwater Networks, Seattle Washington, 2011, pp. 12.
|
[15] |
T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory. 2nd ed. Philadelphia, USA: Society for Industrial and Applied Mathematics, 1998.
|
[16] |
M. O. Sayin and T. Başar, “Secure sensor design for cyber-physical systems against advanced persistent threats,” in Proc. 8th Int. Conf. Decision and Game Theory for Security, Vienna, Austria, 2017, pp. 91–111.
|
[17] |
Q. Zhu and T. Basar, “Game-theoretic methods for robustness, security, and resilience of cyberphysical control systems: Games-in-games principle for optimal cross-layer resilient control systems,” IEEE Contr. Syst. Mag., vol. 35, no. 1, pp. 46–65, Feb. 2015. doi: 10.1109/MCS.2014.2364710
|
[18] |
M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J.-P. Hubaux, “Game theory meets network security and privacy,” ACM Comput. Surv., vol. 45, no. 3, p. 25, Jun. 2013.
|
[19] |
Y. Li, L. Shi, P. Cheng, J. Chen, and D. E. Quevedo, “Jamming attack on cyber-physical systems: A game-theoretic approach,” in Proc. IEEE Int. Conf. Cyber Technology in Automation, Control and Intelligent Systems, Nanjing, China, 2013, pp. 252–257.
|
[20] |
Y. Li, L. Shi, P. Cheng, J. Chen, and D. E. Quevedo, “Jamming attacks on remote state estimation in cyber-physical systems: A game-theoretic approach,” IEEE Trans. Automat. Contr., vol. 60, no. 10, pp. 2831–2836, Oct. 2015. doi: 10.1109/TAC.2015.2461851
|
[21] |
Z. Li, Z. Duan, and L. Huang, “H∞ control of networked multi-agent systems,” J. Syst. Sci. Complex., vol. 22, no. 1, pp. 35–48, Jan. 2009. doi: 10.1007/s11424-009-9145-y
|
[22] |
M. I. Abouheaf, F. L. Lewis, K. G. Vamvoudakis, S. Haesaert, and R. Babuska, “Multi-agent discrete-time graphical games and reinforcement learning solutions,” Automatica, vol. 50, no. 12, pp. 3038–3053, Dec. 2014. doi: 10.1016/j.automatica.2014.10.047
|
[23] |
Q. Jiao, H. Modares, S. Xu, F. L. Lewis, and K. G. Vamvoudakis, “Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control,” Automatica, vol. 69, pp. 24–34, Jul. 2016. doi: 10.1016/j.automatica.2016.02.002
|
[24] |
P. Zhang, Y. Yuan, L. Guo, and H. Liu, “Near-optimal control for time-varying linear discrete systems with additive nonlinearities and random gains,” IEEE Trans. Automat. Contr., vol. 64, no. 7, pp. 2968–2975, Jul. 2019. doi: 10.1109/TAC.2018.2874707
|
[25] |
V. G. Lopez, F. L. Lewis, Y. Wan, M. Liu, G. Hewer, and K. Estabridis, “Stability and robustness analysis of minmax solutions for differential graphical games,” Automatica, vol. 121, p. 109177, Nov. 2020. doi: 10.1016/j.automatica.2020.109177
|
[26] |
K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality,” Automatica, vol. 48, no. 8, pp. 1598–1611, Aug. 2012. doi: 10.1016/j.automatica.2012.05.074
|
[27] |
Y. Li, D. Shi, and T. Chen, “False data injection attacks on networked control systems: A Stackelberg game analysis,” IEEE Trans. Automat. Contr., vol. 63, no. 10, pp. 3503–3509, Oct. 2018. doi: 10.1109/TAC.2018.2798817
|
[28] |
H. Fang, L. Xu, Y. Zou, X. Wang, and K. K. R. Choo, “Three-stage stackelberg game for defending against full-duplex active eavesdropping attacks in cooperative communication,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10788–10799, Nov. 2018. doi: 10.1109/TVT.2018.2868900
|
[29] |
D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe, “Stackelberg vs. Nash in security games: An extended investigation of interchangeability, equivalence, and uniqueness,” J. Artif. Intell. Res., vol. 41, no. 2, pp. 297–327, May. 2011.
|
[30] |
Y. Li, D. Shi, and T. Chen, “Secure analysis of dynamic networks under pinning attacks against synchronization,” Automatica, vol. 111, p. 108576, 2020. doi: 10.1016/j.automatica.2019.108576
|
[31] |
Y. Li, D. Shi, and T. Chen, “False data injection attacks on networked control systems: A Stackelberg game analysis,” IEEE Trans. Automat. Contr., vol. 63, no. 10, pp. 3503–3509, Oct. 2018. doi: 10.1109/TAC.2018.2798817
|
[32] |
K. W. Li, F. Karray, K. W. Hipel, and D. M. Kilgour, “Fuzzy approaches to the game of chicken,” IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 608–623, Aug. 2001. doi: 10.1109/91.940972
|
[33] |
Z. Zheng, P. Zhang, and J. Yuan, “Nonzero-sum pursuit-evasion game control for spacecraft systems: A Q-learning method,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 4, pp. 3971–3981, Aug. 2023. doi: 10.1109/TAES.2023.3235873
|
[34] |
Y. Wang, H.-J. Liu, and H.-L. Tan, “An overview of filtering for sampled-data systems under communication constraints,” Int. J. Netw. Dyn. Intell., vol. 2, no. 3, p. 100011, Sep. 2023.
|
[35] |
C. Deng and C. Wen, “MAS-based distributed resilient control for a class of cyber-physical systems with communication delays under DoS attacks,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2347–2358, May. 2021. doi: 10.1109/TCYB.2020.2972686
|
[36] |
Y. Wu, B. Kang, and H. Wu, “Strategies of attack-defense game for wireless sensor networks considering the effect of confidence level in fuzzy environment,” Eng. Appl. Artif. Intell., vol. 102, p. 104238, Jun. 2021. doi: 10.1016/j.engappai.2021.104238
|
[37] |
Y. Yuan, P. Zhang, Z. Wang, and L. Guo, “On resilient strategy design of multi-tasking optimal control for state-saturated systems with nonlinear disturbances: The time-varying case,” Automatica, vol. 107, pp. 138–145, Sep. 2019. doi: 10.1016/j.automatica.2019.05.041
|
[38] |
L. Ding and W. Sun, “Predefined time fuzzy adaptive control of switched fractional-order nonlinear systems with input saturation,” Int. J. Netw. Dyn. Intell., vol. 2, no. 4, p. 100019, Dec. 2023.
|
[39] |
R. El-Bardan, S. Brahma, and P. K. Varshney, “Power control with jammer location uncertainty: A game theoretic perspective,” in Proc. 48th Annu. Conf. Information Sciences and Systems, Princeton, NJ, USA, 2014, pp. 1–6.
|
[40] |
R. Deng, G. Xiao, and R. Lu, “Defending against false data injection attacks on power system state estimation,” IEEE Trans. Industr. Inform., vol. 13, no. 1, pp. 198–207, Feb. 2017. doi: 10.1109/TII.2015.2470218
|
[41] |
H. Yuan, Y. Xia, H. Yang, and Y. Yuan, “Resilient control for wireless networked control systems under DoS attack via a hierarchical game,” Int. J. Robust Nonlinear Contr., vol. 28, no. 15, pp. 4604–4623, Oct. 2018. doi: 10.1002/rnc.4272
|
[42] |
T. Zhang and Q. Zhu, “Distributed privacy-preserving collaborative intrusion detection systems for VANETs,” IEEE Trans. Signal Inf. Process Netw., vol. 4, no. 1, pp. 148–161, Mar. 2018.
|
[43] |
Q. Liu, Z. Wang, X. He, and D. H. Zhou, “Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case,” IEEE Trans. Automat. Contr., vol. 60, no. 9, pp. 2553–2558, Sep. 2015. doi: 10.1109/TAC.2015.2394872
|
[44] |
C. Zhou, R. Zhao, and W. Tang, “Two-echelon supply chain games in a fuzzy environment,” Comput. Ind. Eng., vol. 55, no. 2, pp. 390–405, Sep. 2008. doi: 10.1016/j.cie.2008.01.014
|
[45] |
A. Jagat and A. J. Sinclair, “Nonlinear control for spacecraft pursuit-evasion game using the state-dependent Riccati equation method,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 6, pp. 3032–3042, Dec. 2017. doi: 10.1109/TAES.2017.2725498
|
[46] |
J. Wang, Y. Hong, J. Wang, J. Xu, Y. Tang, Q.-L. Han, and J. Kurths, “Cooperative and competitive multi-agent systems: From optimization to games,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 763–783, May. 2022. doi: 10.1109/JAS.2022.105506
|
[47] |
H. Modares, B. Kiumarsi, F. L. Lewis, F. Ferrese, and A. Davoudi, “Resilient and robust synchronization of multiagent systems under attacks on sensors and actuators,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1240–1250, Mar. 2020. doi: 10.1109/TCYB.2019.2903411
|
[48] |
Z. Zhang, Y. Shi, Z. Zhang, H. Zhang, and S. Bi, “Modified order-reduction method for distributed control of multi-spacecraft networks with time-varying delays,” IEEE Trans. Contr. Netw. Syst., vol. 5, no. 1, pp. 79–92, Mar. 2018. doi: 10.1109/TCNS.2016.2578046
|