A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 12
Dec.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Q. Lu, X. Wu, J. She, F. Guo, and  L. Yu,  “Disturbance rejection for systems with uncertainties based on fixed-time equivalent-input-disturbance approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2384–2395, Dec. 2024. doi: 10.1109/JAS.2024.124650
Citation: Q. Lu, X. Wu, J. She, F. Guo, and  L. Yu,  “Disturbance rejection for systems with uncertainties based on fixed-time equivalent-input-disturbance approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2384–2395, Dec. 2024. doi: 10.1109/JAS.2024.124650

Disturbance Rejection for Systems With Uncertainties Based on Fixed-Time Equivalent-Input-Disturbance Approach

doi: 10.1109/JAS.2024.124650
Funds:  This work was supported in part by the Natural Science Foundation of China (62003292, 62203391), the Natural Science Foundation of Zhejiang Province (LQ22F030015, LDT23E05014F03), and JSPS (Japan Society for the Promotion of Science) KAKENHI (22H03998, 23K25252)
More Information
  • This paper presents a fixed-time equivalent-input-disturbance (EID) approach to deal with the problem of robust output-feedback control for perturbed uncertain systems. This method uses the basic structure of the conventional EID approach and treats uncertainties and disturbances as a lumped disturbance on the control-input channel. A fixed-time state observer enables state estimation, which resolves the causality issue in an EID-based control system, is finished in a fixed time. An implicit Lyapunov function, the homogeneity with dilation, the input-to-state stability, and the small-gain theorem are used to analyze the convergence and robustness of the EID-based system with measurement noise. Numerical and experimental results are presented to demonstrate the effectiveness and superiority of the proposed method.

     

  • loading
  • [1]
    Y. Liu, C.-Y. Su, and H. Li, “Adaptive output feedback funnel control of uncertain nonlinear systems with arbitrary relative degree,” IEEE Trans. Autom. Control, vol. 66, no. 6, pp. 2854–2860, Jun. 2021. doi: 10.1109/TAC.2020.3012027
    [2]
    J. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 65, no. 2, pp. 832–841, Feb. 2018. doi: 10.1109/TCSI.2017.2725386
    [3]
    C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1672–1678, Jul. 2011. doi: 10.1109/TAC.2011.2122730
    [4]
    J. Yang, S. Li, J. Su, and X. Yu, “Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances,” Automatica, vol. 49, no. 7, pp. 2287–2291, Jul. 2013. doi: 10.1016/j.automatica.2013.03.026
    [5]
    L. Qiu, Y. Shi, J. Pan, B. Xu, and H. Li, “Robust control for a networked direct-drive linear motion control system: Design and experiments,” Inf. Sci., vol. 370, pp. 725–742, Nov. 2016.
    [6]
    B. Kürkçü, C. Kasnakoǧlu, and M. Ö. Efe, “Disturbance/uncertainty estimator based integral sliding-mode control,” IEEE Trans Autom. Control, vol. 63, no. 11, pp. 3940–3947, Nov. 2018. doi: 10.1109/TAC.2018.2808440
    [7]
    O. Mofid, S. Mobayen, C. Zhang, and B. Esakki, “Desired tracking of delayed quadrotor UAV under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control,” ISA Trans., vol. 123, pp. 455–471, Apr. 2022. doi: 10.1016/j.isatra.2021.06.002
    [8]
    W.-H. Chen, J. Yang, L. Guo, and S. Li, “Disturbance-observer-based control and related methods–An overview,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 1083–1095, Feb. 2016. doi: 10.1109/TIE.2015.2478397
    [9]
    J. A. Profeta, W. G. Vogt, and M. H. Mickle, “Disturbance estimation and compensation in linear systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 2, pp. 225–231, Mar. 1990. doi: 10.1109/7.53455
    [10]
    K. Ohnishi, “A new servo method in mechatronics,” Trans. Jpn. Soc. Elect. Eng., vol. 107-D, pp. 83–86, 1987.
    [11]
    S. Kwon and W. K. Chung, “A discrete-time design and analysis of perturbation observer for motion control applications,” IEEE Trans. Control Syst. Technol., vol. 11, no. 3, pp. 399–407, May 2003. doi: 10.1109/TCST.2003.810398
    [12]
    J. Han, “A class of extended state observers for uncertain systems,” Control Decis., vol. 10, no. 1, pp. 85–88, Jan. 1995.
    [13]
    J. She, M. Fang, Y. Ohyama, H. Hashimoto, and M. Wu, “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 380–389, Jan. 2008. doi: 10.1109/TIE.2007.905976
    [14]
    J. She, K. Miyamoto, Q.-L. Han, M. Wu, H. Hashimoto, and Q.-G. Wang, “Generalized-extended-state-observer and equivalent-input-disturbance methods for active disturbance rejection: Deep observation and comparison,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 957–968, Apr. 2023. doi: 10.1109/JAS.2022.105929
    [15]
    Y. Wang, X. Wu, W.-A. Zhang, and M. Wu, “Equivalent-input-disturbance-based position synchronization control of networked multiaxis motion system,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8317–8324, Aug. 2021.
    [16]
    P. Yu, M. Wu, J. She, K.-Z. Liu, and Y. Nakanishi, “Robust tracking and disturbance rejection for linear uncertain system with unknown state delay and disturbance,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 3, pp. 1445–1455, Jun. 2018. doi: 10.1109/TMECH.2018.2816005
    [17]
    L. Ouyang, M. Wu, and J. She, “Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach,” Nonlinear Dyn., vol. 88, no. 3, pp. 2161–2170, Feb. 2017. doi: 10.1007/s11071-017-3369-5
    [18]
    Y. Du, W. Cao, M. She, J. Wu, M. Fang, and S. Kawata, “Disturbance rejection and control system design using improved equivalent-input-disturbance approach,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3013–3023, Apr. 2020. doi: 10.1109/TIE.2019.2913829
    [19]
    Y. Du, W. Cao, J. She, M. Wu, M. Fang, and S. Kawata, “Disturbance rejection and robustness of improved equivalent-input-disturbance-based system,” IEEE Trans. Cybern., vol. 52, no. 8, pp. 8537–8546, Aug. 2022. doi: 10.1109/TCYB.2021.3053597
    [20]
    X. Wu, G. Huang, G, F. Guo, Q. Lu, J. She, and L. Yu, “An adaptive filter-based equivalent-input-disturbance approach for networked control systems with measurement noise,” IEEE Trans. Ind. Electron., vol. 70, no. 6, pp. 6170–6179, Jun. 2023. doi: 10.1109/TIE.2022.3198245
    [21]
    M. Sun, “Two-phase attractors for finite-duration consensus of multiagent systems,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 5, pp. 1757–1765, May 2020. doi: 10.1109/TSMC.2017.2785314
    [22]
    C. P. Tan, X. Yu, and Z. Man, “Terminal sliding mode observers for a class of nonlinear systems,” Automatica, vol. 46, no. 8, pp. 1401–1404, Aug. 2010. doi: 10.1016/j.automatica.2010.05.010
    [23]
    F. Lopez-Ramirez, A. Polyakov, D. Efimov, and W. Perruquetti, “Finite-time and fixed-time observer design: Implicit Lyapunov function approach,” Automatica, vol. 87, pp. 52–60, Jan. 2018. doi: 10.1016/j.automatica.2017.09.007
    [24]
    D. Ma, Y. Xia, G. Shen, H. Jiang, and C. Hao, “Practical fixed-time disturbance rejection control for quadrotor attitude tracking,” IEEE Trans. Ind. Electron., vol. 68, no. 8, pp. 7274–7283, Aug. 2021. doi: 10.1109/TIE.2020.3001800
    [25]
    Y. Aoustin, C. Chevallerau, and Y. Orlov, “Finite time stabilization of a perturbed double integrator—Part II: Applications to bipedal locomotion,” in Proc. IEEE Conf. Decision Control, 2010, pp. 3554–3559.
    [26]
    Q. Lu, J. Chen, X. Wu, D. Zhang, J. She, and C.-Y. Su, “Disturbance rejection and control design using finite-time and fixed-time equivalent-input-disturbance approaches”, in Proc. 41st Chin. Control Conf., Hefei, China, 2022, pp. 2131–2137.
    [27]
    F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, “Finite-time and fixed-time input-to-state stability: Explicit and implicit approaches,” Syst. Control Lett., vol. 144, p. 104775, Oct. 2020. doi: 10.1016/j.sysconle.2020.104775
    [28]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2012. doi: 10.1109/TAC.2011.2179869
    [29]
    S. Dashkovskiy, D. Efimov, and E. Sontag, “Input to state estability and allied system properties,” Autom. Remote Control, vol. 72, no. 8, pp. 1579–1614, Aug. 2011. doi: 10.1134/S0005117911080017
    [30]
    A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control Theory, Berlin, Germany: Springer, 2005.
    [31]
    L. Wang, “Fixed-time pertubration-based extremum seeking control method” Ph.D. dissertation, Control and Simulation Center, Harbin Institute of Technology, Harbin, China 2020.
    [32]
    W. Cai, J. She, M. Wu, and Y. Ohyama, “Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach,” ISA Trans., vol. 92, pp. 286–297, Sep. 2019. doi: 10.1016/j.isatra.2019.02.028
    [33]
    J. Wang, L. Zhao, and L. Yu, “Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation,” IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 756–766, Jan. 2020.
    [34]
    A. A. Prasov and H. K. Khalil, “A nonlinear high-gain observer for systems with measurement noise in a feedback control framework,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 569–580, Mar. 2013. doi: 10.1109/TAC.2012.2218063
    [35]
    L. Wu, P. Mei, B. Lei, and Z. Lin, “Dead-beat terminal sliding mode control with application to DC-DC buck converters,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 70, no. 7, pp. 2470–2474, Jul. 2023.
    [36]
    H. Mehar, “The case study of simulation of power converter circuits using PSIM software in teaching,” American J. Educational Research, vol. 1, no. 4, pp. 137–142, 2013.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (339) PDF downloads(120) Cited by()

    Highlights

    • The proposed fixed-time EID method allows EID to handle finite-time observation tasks
    • The filter in the approach can achieve fast disturbance reconstruction of disturbances
    • The fixed-time EID also demonstrates a degree of robustness to measurement noise

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return