IEEE/CAA Journal of Automatica Sinica
Citation: | J. Xu, Z. Zhang, Z. Lin, Y. Chen, and W. Ding, “Multi-view dynamic kernelized evidential clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2435–2450, Dec. 2024. doi: 10.1109/JAS.2024.124608 |
[1] |
Y. Yang and H. Wang, “Multi-view clustering: A survey,” Big Data Min. Anal., vol. 1, no. 2, pp. 83–107, Jun. 2018. doi: 10.26599/BDMA.2018.9020003
|
[2] |
X. Cai, D. Huang, G.-Y. Zhang, and C.-D. Wang, “Seeking commonness and inconsistencies: A jointly smoothed approach to multi-view subspace clustering,” Inf. Fusion, vol. 91, pp. 364–375, Mar. 2023. doi: 10.1016/j.inffus.2022.10.020
|
[3] |
X. Yu, H. Liu, Y. Lin, N. Liu, and S. Sun, “Sample-level weights learning for multi-view clustering on spectral rotation,” Inf. Sci., vol. 619, pp. 38–51, Jan. 2023. doi: 10.1016/j.ins.2022.10.089
|
[4] |
M.-S. Chen, C.-D. Wang, and J.-H. Lai, “Low-rank tensor based proximity learning for multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 5076–5090, May 2023. doi: 10.1109/TKDE.2022.3151861
|
[5] |
W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. Tao, “Tensorized bipartite graph learning for multi-view clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 5187–5202, Apr. 2023. doi: 10.1109/TPAMI.2022.3187976
|
[6] |
S. Wang, X. Lin, Z. Fang, S. Du, and G. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959
|
[7] |
N. Weir, D. Lindenbaum, A. Bastidas, A. Etten, V. Kumar, S. McPherson, J. Shermeyer, and H. Tang, “SpaceNet MVOI: A multi-view overhead imagery dataset,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 992–1001.
|
[8] |
F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R. Wang, and A. Yao, “Assembly101: A large-scale multi-view video dataset for understanding procedural activities,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 21064–21074.
|
[9] |
Y. Zhou, X. Yue, Y. Chen, C. Ma, and K. Jiang, “Convolutional redistribution network for multi-view medical image diagnosis,” in Proc. 11th Workshop on Clinical Image-Based Procedures, Singapore, Singapore, 2023, pp. 54–61.
|
[10] |
J. Han, J. Xu, F. Nie, and X. Li, “Multi-view K-means clustering with adaptive sparse memberships and weight allocation,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 2, pp. 816–827, Feb. 2022. doi: 10.1109/TKDE.2020.2986201
|
[11] |
S. Huang, I. W. Tsang, Z. Xu, and J. Lv, “Measuring diversity in graph learning: A unified framework for structured multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp. 5869–5883, Dec. 2022. doi: 10.1109/TKDE.2021.3068461
|
[12] |
Y. Wang and T. Aste, “Dynamic portfolio optimization with inverse covariance clustering,” Expert Syst. Appl., vol. 213, p. 118739, Mar. 2023. doi: 10.1016/j.eswa.2022.118739
|
[13] |
L. Chen, K. Wang, M. Li, M. Wu, W. Pedrycz, and K. Hirota, “K-means clustering-based kernel canonical correlation analysis for multimodal emotion recognition in human-robot interaction,” IEEE Trans. Ind. Electron., vol. 70, no. 1, pp. 1016–1024, Jan. 2023. doi: 10.1109/TIE.2022.3150097
|
[14] |
P. Favati and O. Menchi, “A two-phase strategy for nonconvex clusters integrating a spectral clustering with a merging technique,” Expert Syst. Appl., vol. 214, p. 119099, Mar. 2023. doi: 10.1016/j.eswa.2022.119099
|
[15] |
C. Tang, X. Liu, X. Zhu, E. Zhu, Z. Luo, L. Wang, and W. Gao, “CGD: Multi-view clustering via cross-view graph diffusion,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, USA, 2020, pp. 5924–5931.
|
[16] |
G. Zhong and C.-M. Pun, “Improved normalized cut for multi-view clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 10244–10251, Dec. 2022. doi: 10.1109/TPAMI.2021.3136965
|
[17] |
J. Wang, C. Tang, Z. Wan, W. Zhang, K. Sun, and A. Y. Zomaya, “Efficient and effective one-step multiview clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 9, pp. 12224–12235, Sep. 2024. doi: 10.1109/TNNLS.2023.3253246
|
[18] |
D. Wu, J. Lu, F. Nie, R. Wang, and Y. Yuan, “EMGC.2F: Efficient multi-view graph clustering with comprehensive fusion,” in Proc. 31st Int. Joint Conf. Artificial Intelligence, Vienna, Austria, 2022, pp. 3566–3572.
|
[19] |
D. Huang, C.-D. Wang, and J.-H. Lai, “Fast multi-view clustering via ensembles: Towards scalability, superiority, and simplicity,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp. 11388–11402, Nov. 2023. doi: 10.1109/TKDE.2023.3236698
|
[20] |
J. Lao, D. Huang, C.-D. Wang, and J.-H. Lai, “Towards scalable multi-view clustering via joint learning of many bipartite graphs,” IEEE Trans. Big Data, vol. 10, no. 1, pp. 77–91, Feb. 2024. doi: 10.1109/TBDATA.2023.3325045
|
[21] |
C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor constrained multiview subspace clustering,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 1582–1590.
|
[22] |
C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized latent multi-view subspace clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1, pp. 86–99, Jan. 2020. doi: 10.1109/TPAMI.2018.2877660
|
[23] |
G.-Y. Zhang, X.-W. Chen, Y.-R. Zhou, C.-D. Wang, D. Huang, and X.-Y. He, “Kernelized multi-view subspace clustering via auto-weighted graph learning,” Appl. Intell., vol. 52, no. 1, pp. 716–731, Jan. 2022. doi: 10.1007/s10489-021-02365-8
|
[24] |
S.-G. Fang, D. Huang, X.-S. Cai, C.-D. Wang, C. He, and Y. Tang, “Efficient multi-view clustering via unified and discrete bipartite graph learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 8, pp. 11436–11447, Aug. 2024. doi: 10.1109/TNNLS.2023.3261460
|
[25] |
J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms. New York, USA: Springer Science & Business Media, 2013.
|
[26] |
C. Wang, W. Pedrycz, Z. Li, and M. C. Zhou, “Residual-driven fuzzy c-means clustering for image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 876–889, Apr. 2021. doi: 10.1109/JAS.2020.1003420
|
[27] |
G. Cleuziou, M. Exbrayat, L. Martin, and J.-H. Sublemontier, “CoFKM: A centralized method for multiple-view clustering,” in Proc. 9th IEEE Int. Conf. Data Mining, Miami Beach, USA, 2009, pp. 752–757.
|
[28] |
Y. Jiang, F.-L. Chung, S. Wang, Z. Deng, J. Wang, and P. Qian, “Collaborative fuzzy clustering from multiple weighted views,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 688–701, Apr. 2015. doi: 10.1109/TCYB.2014.2334595
|
[29] |
M.-S. Yang and K. P. Sinaga, “Collaborative feature-weighted multi-view fuzzy c-means clustering,” Pattern Recognit., vol. 119, p. 108064, Nov. 2021. doi: 10.1016/j.patcog.2021.108064
|
[30] |
G. Shafer, A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press, 1976.
|
[31] |
T. Den?ux and M.-H. Masson, “EVCLUS: Evidential clustering of proximity data,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 1, pp. 95–109, Feb. 2004. doi: 10.1109/TSMCB.2002.806496
|
[32] |
V. Antoine, B. Quost, M.-H. Masson, and T. Denoeux, “CECM: Constrained evidential c-means algorithm,” Comput. Stat. Data Anal., vol. 56, no. 4, pp. 894–914, Apr. 2012. doi: 10.1016/j.csda.2010.09.021
|
[33] |
Z.-G. Liu, Q. Pan, J. Dezert, and G. Mercier, “Credal c-means clustering method based on belief functions,” Knowl.-Based Syst., vol. 74, pp. 119–132, Jan. 2015. doi: 10.1016/j.knosys.2014.11.013
|
[34] |
Z.-W. Zhang, Z. Liu, A. Martin, Z.-G. Liu, and K. Zhou, “Dynamic evidential clustering algorithm,” Knowl.-Based Syst., vol. 213, p. 106643, Feb. 2021. doi: 10.1016/j.knosys.2020.106643
|
[35] |
L. Jiao, F. Wang, Z.-G. Liu, and Q. Pan, “TECM: Transfer learning-based evidential c-means clustering,” Knowl.-Based Syst., vol. 257, p. 109937, Dec. 2022. doi: 10.1016/j.knosys.2022.109937
|
[36] |
K. Zhou, M. Guo, and M. Jiang, “Evidential weighted multi-view clustering,” in Proc. 6th Int. Conf. Belief Functions: Theory and Applications, Shanghai, China, 2021, pp. 22–32.
|
[37] |
C. Gong and Y. You, “Sparse reconstructive evidential clustering for multi-view data,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 459–473, Feb. 2024. doi: 10.1109/JAS.2023.123579
|
[38] |
P. Smets, “The transferable belief model for quantified belief representation,” in Quantified Representation of Uncertainty and Imprecision, P. Smets, Ed. Dordrecht, The Netherlands: Springer, 1998, pp. 267–301.
|
[39] |
Z.-G. Liu, G. Qiu, G. Mercier, and Q. Pan, “A transfer classification method for heterogeneous data based on evidence theory,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 8, pp. 5129–5141, Aug. 2021. doi: 10.1109/TSMC.2019.2945808
|
[40] |
Z.-F. Ma, H.-P. Tian, Z.-C. Liu, and Z.-W. Zhang, “A new incomplete pattern belief classification method with multiple estimations based on KNN,” Appl. Soft Comput., vol. 90, p. 106175, May 2020. doi: 10.1016/j.asoc.2020.106175
|
[41] |
Z. Liu, X. Zhang, J. Niu, and J. Dezert, “Combination of classifiers with different frames of discernment based on belief functions,” IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1764–1774, Jul. 2021. doi: 10.1109/TFUZZ.2020.2985332
|
[42] |
Z.-W. Zhang, H.-P. Tian, L.-Z. Yan, A. Martin, and K. Zhou, “Learning a credal classifier with optimized and adaptive multiestimation for missing data imputation,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 7, pp. 4092–4104, Jul. 2022. doi: 10.1109/TSMC.2021.3090210
|
[43] |
Z.-W. Zhang, Z. Liu, Z.-F. Ma, Y. Zhang, and H. Wang, “A new belief-based incomplete pattern unsupervised classification method,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5084–5097, Nov. 2022. doi: 10.1109/TKDE.2021.3049511
|
[44] |
Z. Zhang, S. Ye, Y. Zhang, W. Ding, and H. Wang, “Belief combination of classifiers for incomplete data,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 652–667, Apr. 2022. doi: 10.1109/JAS.2022.105458
|
[45] |
M.-H. Masson and T. Denoeux, “ECM: An evidential version of the fuzzy c-means algorithm,” Pattern Recognit., vol. 41, no. 4, pp. 1384–1397, Apr. 2008. doi: 10.1016/j.patcog.2007.08.014
|
[46] |
B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch, and A. J. Smola, “Input space versus feature space in kernel-based methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017, Sep. 1999. doi: 10.1109/72.788641
|
[47] |
A. Geifman, M. Galun, D. Jacobs, and R. Basri, “On the spectral bias of convolutional neural tangent and Gaussian process kernels,” in Proc. 36th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2022, pp. 818.
|
[48] |
W. Liang, X. Liu, Y. Liu, S. Zhou, J.-J. Huang, S. Wang, J. Liu, Y. Zhang, and E. Zhu, “Stability and generalization of kernel clustering: From single kernel to multiple kernel,” in Proc. 36th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2022, pp. 2437.
|
[49] |
Y. Lu, X. Zheng, R. Wang, F. Nie, and X. Li, “A unified framework for discrete multi-kernel k-means with kernel diversity regularization,” in Proc. 26th Int. Conf. Pattern Recognition, Montreal, Canada, 2022, pp. 4934–4940.
|
[50] |
Y. Tang, Z. Pan, W. Pedrycz, F. Ren, and X. Song, “Viewpoint-based kernel fuzzy clustering with weight information granules,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 2, pp. 342–356, Apr. 2023. doi: 10.1109/TETCI.2022.3201620
|
[51] |
A. Gupta and S. Das, “Transfer clustering using a multiple kernel metric learned under multi-instance weak supervision,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 4, pp. 828–838, Aug. 2022. doi: 10.1109/TETCI.2021.3110526
|
[52] |
D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy c-means algorithm with application in medical image segmentation,” Artif. Intell. Med., vol. 32, no. 1, pp. 37–50, Sep. 2004. doi: 10.1016/j.artmed.2004.01.012
|
[53] |
H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1116–1129, Jun. 2020. doi: 10.1109/TKDE.2019.2903810
|
[54] |
X. Gao, X. Ma, W. Zhang, J. Huang, H. Li, Y. Li, and J. Cui, “Multi-view clustering with self-representation and structural constraint,” IEEE Trans. Big Data, vol. 8, no. 4, pp. 882–893, Aug. 2022. doi: 10.1109/TBDATA.2021.3128906
|