IEEE/CAA Journal of Automatica Sinica
Citation: | H. Wang, J. Peng, F. Zhang, and Y. Wang, “High-order control barrier function-based safety control of constrained robotic systems: An augmented dynamics approach,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2487–2496, Dec. 2024. doi: 10.1109/JAS.2024.124524 |
[1] |
Y. Yang, J. Han, Z. Liu, Z. Zhao, and K.-S. Hong, “Modeling and adaptive neural network control for a soft robotic arm with prescribed motion constraints,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 501–511, 2023. doi: 10.1109/JAS.2023.123213
|
[2] |
L. Han, H. Yuan, W. Xu, and Y. Huang, “Modified dynamic movement primitives: Robot trajectory planning and force control under curved surface constraints,” IEEE Trans. Cybernetics, vol. 53, no. 7, pp. 4245–4258, 2023. doi: 10.1109/TCYB.2022.3158029
|
[3] |
L. Kong, W. He, W. Yang, Q. Li, and O. Kaynak, “Fuzzy approximation-based finite-time control for a robot with actuator saturation under time-varying constraints of work space,” IEEE Trans. Cybernetics, vol. 51, no. 10, pp. 4873–4884, 2021. doi: 10.1109/TCYB.2020.2998837
|
[4] |
V. Azimi and S. Hutchinson, “Robust adaptive control Lyapunov barrier function for non-collocated control and safety of underactuated robotic systems,” Int. J. Robust and Nonlinear Control, vol. 32, no. 13, pp. 7363–7390, 2022. doi: 10.1002/rnc.6239
|
[5] |
G. Zong, Y. Wang, H. R. Karimi, and K. Shi, “Observer-based adaptive neural tracking control for a class of nonlinear systems with prescribed performance and input dead-zone constraints,” Neural Networks, vol. 147, pp. 126–135, 2022. doi: 10.1016/j.neunet.2021.12.019
|
[6] |
Y. Wu, W. Niu, L. Kong, X. Yu, and W. He, “Fixed-time neural network control of a robotic manipulator with input deadzone,” ISA Trans., vol. 135, pp. 449–461, 2023. doi: 10.1016/j.isatra.2022.09.030
|
[7] |
T. Yang, Y. Chen, N. Sun, L. Liu, Y. Qin, and Y. Fang, “Learning-based error-constrained motion control for pneumatic artificial muscle-actuated exoskeleton robots with hardware experiments,” IEEE Trans. Autom. Science and Engineering, vol. 19, no. 4, pp. 3700–3711, 2022. doi: 10.1109/TASE.2021.3131034
|
[8] |
C. Zhu, Y. Jiang, and C. Yang, “Fixed-time neural control of robot manipulator with global stability and guaranteed transient performance,” IEEE Trans. Industrial Electronics, vol. 70, no. 1, pp. 803–812, 2023. doi: 10.1109/TIE.2022.3156037
|
[9] |
S. Lu, M. Chen, Y. Liu, and S. Shao, “Adaptive NN tracking control for uncertain MIMO nonlinear system with time-varying state constraints and disturbances,” IEEE Trans. Neural Networks and Learning Systems, vol. 34, no. 10, pp. 7309–7323, 2023. doi: 10.1109/TNNLS.2022.3141052
|
[10] |
A. Kazemipour, M. Khatib, K. A. Khudir, C. Gaz, and A. De Luca, “Kinematic control of redundant robots with online handling of variable generalized hard constraints,” IEEE Robotics and Autom. Letters, vol. 7, no. 4, pp. 9279–9286, 2022. doi: 10.1109/LRA.2022.3190832
|
[11] |
Y. Zhang and C. Hua, “Composite learning finite-time control of robotic systems with output constraints,” IEEE Trans. Industrial Electronics, vol. 70, no. 2, pp. 1687–1695, 2023. doi: 10.1109/TIE.2022.3161796
|
[12] |
W. Sun, Y. Wu, and X. Lv, “Adaptive neural network control for full-state constrained robotic manipulator with actuator saturation and time-varying delays,” IEEE Trans. Neural Networks and Learning Systems, vol. 33, no. 8, pp. 3331–3342, 2022. doi: 10.1109/TNNLS.2021.3051946
|
[13] |
G. Zhu, H. Li, X. Zhang, C. Wang, C.-Y. Su, and J. Hu, “Adaptive consensus quantized control for a class of high-order nonlinear multi-agent systems with input hysteresis and full state constraints,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 9, pp. 1574–1589, 2022. doi: 10.1109/JAS.2022.105800
|
[14] |
Y. Hu, H. Yan, H. Zhang, M. Wang, and L. Zeng, “Robust adaptive fixed-time sliding-mode control for uncertain robotic systems with input saturation,” IEEE Trans. Cybernetics, vol. 53, no. 4, pp. 2636–2646, 2023. doi: 10.1109/TCYB.2022.3164739
|
[15] |
K. Zhao, Y. Song, C. L. P. Chen, and L. Chen, “Control of nonlinear systems under dynamic constraints: A unified barrier function-based approach,” Automatica, vol. 119, p. 109102, 2020. doi: 10.1016/j.automatica.2020.109102
|
[16] |
S. Lu, M. Chen, Y. Liu, and S. Shao, “SDO-based command filtered adaptive neural tracking control for MIMO nonlinear systems with time-varying constraints,” IEEE Trans. Cybernetics, vol. 54, no. 9, pp. 5054–5067, Sept. 2024. doi: 10.1109/TCYB.2023.3325456
|
[17] |
K. Yong, M. Chen, Y. Shi, and Q. Wu, “Flexible performance-based robust control for a class of nonlinear systems with input saturation,” Automatica, vol. 122, p. 109268, 2020. doi: 10.1016/j.automatica.2020.109268
|
[18] |
Y. Yang, J. Tan, and D. Yue, “Prescribed performance control of one-DOF link manipulator with uncertainties and input saturation constraint,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 148–157, 2019. doi: 10.1109/JAS.2018.7511099
|
[19] |
B. Helian, Z. Chen, and B. Yao, “Constrained motion control of an electro- hydraulic actuator under multiple time-varying constraints,” IEEE Trans. Industrial Informatics, vol. 19, no. 12, pp. 11878–11888, 2023. doi: 10.1109/TII.2023.3249760
|
[20] |
W. S. Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for mechanical systems: Theory and application to robotic grasping,” IEEE Trans. Control Systems Technology, vol. 29, no. 2, pp. 530–545, 2021. doi: 10.1109/TCST.2019.2952317
|
[21] |
S. Zhang, D. Zhai, Y. Xiong, J. Lin, and Y. Xia, “Safety-critical control for robotic systems with uncertain model via control barrier function,” Int. J. Robust and Nonlinear Control, vol. 33, no. 6, pp. 3661–3676, 2023. doi: 10.1002/rnc.6585
|
[22] |
Q. Nguyen, and K. Sreenath, “Robust safety-critical control for dynamic robotics,” IEEE Trans. Autom. Control, vol. 67, no. 3, pp. 1073–1088, 2022. doi: 10.1109/TAC.2021.3059156
|
[23] |
A. D. Ames, X. Xu, J.W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017. doi: 10.1109/TAC.2016.2638961
|
[24] |
H. Wang, J. Peng, F. Zhang, and Y. Wang, “A composite control framework of safety satisfaction and uncertainties compensation for constrained time-varying nonlinear MIMO systems,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 53, no. 12, pp. 7864–7875, 2023. doi: 10.1109/TSMC.2023.3301881
|
[25] |
B. Li, S. Wen, Z. Yan, G. Wen, and T. Huang, “A survey on the control lyapunov function and control barrier function for nonlinear-affine control systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 584–602, 2023. doi: 10.1109/JAS.2023.123075
|
[26] |
A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in Proc. 18th European Control Conf., Naples, Italy, pp. 3420–3431, 2019.
|
[27] |
X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier functions for safety critical control,” in Proc. IFAC Conf. Analysis and Design of Hybrid Systems, vol. 48, no. 27, pp. 54–61, 2015.
|
[28] |
X. Tan, W. S. Cortez, and D. V. Dimarogonas, “High-order barrier functions: Robustness, safety, and performance-critical control,” IEEE Trans. Autom. Control, vol. 67, no. 6, pp. 3021–3028, 2022. doi: 10.1109/TAC.2021.3089639
|
[29] |
A. Singletary, S. Kolathaya, and A. D. Ames, “Safety-critical kinematic control of robotic systems,” IEEE Control Systems Letters, vol. 6, pp. 139–144, 2022. doi: 10.1109/LCSYS.2021.3050609
|
[30] |
C. T. Landi, F. Ferraguti, S. Costi, M. Bonfe, and C. Secchi, “Safety barrier functions for human-robot interaction with industrial manipulators,” in Proc. 18th European Control Conf., pp. 2565–2570, 2019.
|
[31] |
T. G. Molnar, R. K. Cosner, A. W. Singletary, W. Ubellacker, and A. D. Ames, “Model-free safety-critical control for robotic systems,” IEEE Robotics and Autom. Letters, vol. 7, no. 2, pp. 944–951, 2022. doi: 10.1109/LRA.2021.3135569
|
[32] |
L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Trans. Robotics, vol. 33, no. 3, pp. 661–674, 2017. doi: 10.1109/TRO.2017.2659727
|
[33] |
X. Xu, “Constrained control of input-output linearizable systems using control sharing barrier function,” Automatica, vol. 87, pp. 195–201, 2018. doi: 10.1016/j.automatica.2017.10.005
|
[34] |
W. Xiao, C. Belta, and C. G. Cassandras, “Adaptive control barrier functions,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2267–2281, 2022. doi: 10.1109/TAC.2021.3074895
|
[35] |
H. Wang, J. Peng, J. Xu, F. Zhang, and Y. Wang, “High-order control barrier functions-based optimization control for time-varying nonlinear systems with full-state constraints: A dynamic sub-safe set approach,” Int. J. Robust and Nonlinear Control, vol. 33, no. 8, pp. 4490–4503, 2023. doi: 10.1002/rnc.6624
|
[36] |
H. Wang, J. Peng, F. Zhang, H. Zhang, and Y. Wang, “High-order control barrier functions-based impedance control of a robotic manipulator with time-varying output constraints,” ISA Trans., vol. 129, pp. 361–369, 2022. doi: 10.1016/j.isatra.2022.02.013
|
[37] |
B. Park and J. Parkm, “Heel-strike and toe-off walking of humanoid robot using quadratic programming considering the foot contact states,” Robotics and Autonomous Systems, vol. 163, p. 104396, 2023. doi: 10.1016/j.robot.2023.104396
|
[38] |
J. Lin, D.-H. Zhai, Y. Xiong, and Y. Xia, “Safety control for UR-type robotic manipulators via high-order control barrier functions and analytical inverse kinematics,” IEEE Trans. Industrial Electronics, vol. 71, no. 6, pp. 6150–6160, Jun. 2024. doi: 10.1109/TIE.2023.3296810
|
[39] |
J. Christoph and S. Hirche, “Augmented invariance control for impedance-controlled robots with safety margins,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12053–12058, 2017. doi: 10.1016/j.ifacol.2017.08.2121
|
[40] |
H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
|
[41] |
C. I. Byrnes and A. Isidori, “Global feedback stabilization of nonlinear systems,” in Proc. 24th IEEE Conf. Decision and Control, Fort Lauderdale, USA, pp. 1031–1037, 1985.
|