IEEE/CAA Journal of Automatica Sinica
Citation: | C. Ma and D. Dong, “Non-singular practical fixed-time prescribed performance adaptive fuzzy consensus control for multi-agent systems based on an observer,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 6, pp. 1209–1220, Jun. 2025. doi: 10.1109/JAS.2024.124428 |
[1] |
J. Zheng, T. Yang, H. Liu, T. Su, and L. Wan, “Accurate detection and localization of unmanned aerial vehicle swarms-enabled mobile edge computing system,” IEEE Trans. Industr. Inform., vol. 17, no. 7, pp. 5059–5067, Jul. 2021. doi: 10.1109/TII.2020.3015730
|
[2] |
A. Amini, A. Asif, and A. Mohammadi, “Formation-containment control using dynamic event-triggering mechanism for multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1235–1248, Sep. 2020. doi: 10.1109/JAS.2020.1003288
|
[3] |
D. Yu, C. L. P. Chen, and H. Xu, “Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 52, no. 4, pp. 2262–2274, Apr. 2022. doi: 10.1109/TSMC.2020.3048733
|
[4] |
Y. Gao, W. Zhou, B. Niu, Y. Kao, H. Wang, and N. Sun, “Distributed prescribed-time consensus tracking for heterogeneous nonlinear multi-agent systems under deception attacks and actuator faults,” IEEE Trans. Autom. Sci. Eng., 2023. doi: 10.1109/TASE.2023.3334613
|
[5] |
W. Wang, C. Wen, and J. Huang, “Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances,” Automatica, vol. 77, pp. 133–142, Mar. 2017. doi: 10.1016/j.automatica.2016.11.019
|
[6] |
C. L. P. Chen, C.-E. Ren, and T. Du, “Fuzzy observed-based adaptive consensus tracking control for second-order multiagent systems with heterogeneous nonlinear dynamics,” IEEE Trans. Fuzzy Syst., vol. 24, no. 4, pp. 906–915, Aug. 2016. doi: 10.1109/TFUZZ.2015.2486817
|
[7] |
L. Wang and J. Dong, “Adaptive fuzzy consensus tracking control for uncertain fractional-order multiagent systems with event-triggered input,” IEEE Trans. Fuzzy Syst., vol. 30, no. 2, pp. 310–320, Feb. 2022. doi: 10.1109/TFUZZ.2020.3037957
|
[8] |
Y. Su and J. Huang, “Cooperative output regulation of linear multi-agent systems,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1062–1066, Apr. 2012. doi: 10.1109/TAC.2011.2169618
|
[9] |
Y. Su and J. Huang, “Cooperative output regulation with application to multi-agent consensus under switching network,” IEEE Trans. Syst., Man, Cybern., Part B (Cybern.), vol. 42, no. 3, pp. 864–875, Jun. 2012. doi: 10.1109/TSMCB.2011.2179981
|
[10] |
B. Kaviarasan, O.-M. Kwon, M. J. Park, and R. Sakthivel, “Stochastic faulty estimator-based non-fragile tracking controller for multi-agent systems with communication delay,” Appl. Math. Comput., vol. 392, p. 125704, Mar. 2021.
|
[11] |
K. Aryankia and R. R. Selmic, “Neural network-based formation control with target tracking for second-order nonlinear multiagent systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 1, pp. 328–341, Feb. 2022. doi: 10.1109/TAES.2021.3111719
|
[12] |
G. Franzè, F. Tedesco, and D. Famularo, “Resilience against replay attacks: A distributed model predictive control scheme for networked multi-agent systems,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 628–640, Mar. 2021. doi: 10.1109/JAS.2020.1003542
|
[13] |
R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances,” IEEE Trans. Control Syst. Technol., vol. 27, no. 1, pp. 39–47, Jan. 2019. doi: 10.1109/TCST.2017.2757448
|
[14] |
O. Mofid and S. Mobayen, “Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties,” ISA Trans., vol. 72, pp. 1–14, Jan. 2018. doi: 10.1016/j.isatra.2017.11.010
|
[15] |
Y. Liu, X. Liu, and Y. Jing, “Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance,” Inf. Sci., vol. 468, pp. 29–46, Nov. 2018. doi: 10.1016/j.ins.2018.08.029
|
[16] |
D. Yu, C. L. P. Chen, C.-E. Ren, and S. Sui, “Swarm control for self-organized system with fixed and switching topology,” IEEE Trans. Cybern., vol. 50, no. 10, pp. 4481–4494, Oct. 2020. doi: 10.1109/TCYB.2019.2952913
|
[17] |
C. Ma and D. Dong, “Finite-time prescribed performance time-varying formation control for second-order multi-agent systems with non-strict feedback based on a neural network observer,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1039–1050, Apr. 2024. doi: 10.1109/JAS.2023.123615
|
[18] |
H. Hong, W. Yu, G. Wen, and X. Yu, “Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 47, no. 7, pp. 1464–1473, Jul. 2017. doi: 10.1109/TSMC.2016.2623634
|
[19] |
J. Liu, G. Ran, Y. Wu, L. Xue, and C. Sun, “Dynamic event-triggered practical fixed-time consensus for nonlinear multiagent systems,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 69, no. 4, pp. 2156–2160, Apr. 2022.
|
[20] |
A. Sharifi and M. Pourgholi, “Adaptive controller design for fixed-time leader-following consensus of multi-agent systems with discontinuous dynamics,” Int. J. Control, vol. 95, no. 3, pp. 830–839, Sep. 2022. doi: 10.1080/00207179.2020.1825817
|
[21] |
B. Cui, Y. Xia, K. Liu, and G. Shen, “Finite-time tracking control for a class of uncertain strict-feedback nonlinear systems with state constraints: A smooth control approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4920–4932, Nov. 2020. doi: 10.1109/TNNLS.2019.2959016
|
[22] |
A. Khanzadeh and M. Pourgholi, “Fixed-time leader-follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique,” IET Control Theory Appl., vol. 12, no. 5, pp. 679–686, Mar. 2018. doi: 10.1049/iet-cta.2017.1094
|
[23] |
H. Xu, D. Yu, S. Sui, Y.-P. Zhao, C. L. P. Chen, and Z. Wang, “Nonsingular practical fixed-time adaptive output feedback control of MIMO nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 7222–7234, Oct. 2023. doi: 10.1109/TNNLS.2021.3139230
|
[24] |
C. P. Bechlioulis and G. A. Rovithakis, “Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances,” in Proc. 16th Mediterranean Conf. Control and Automation, Ajaccio, France, 2008, pp. 1035–1040.
|
[25] |
S.-L. Dai, S. He, X. Chen, and X. Jin, “Adaptive leader-follower formation control of nonholonomic mobile robots with prescribed transient and steady-state performance,” IEEE Trans. Industr. Inform., vol. 16, no. 6, pp. 3662–3671, Jun. 2020. doi: 10.1109/TII.2019.2939263
|
[26] |
X.-T. Tran and H. Oh, “Prescribed performance adaptive finite-time control for uncertain horizontal platform systems,” ISA Trans., vol. 103, pp. 122–130, Aug. 2020. doi: 10.1016/j.isatra.2020.03.015
|
[27] |
J.-X. Zhang and G.-H. Yang, “Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions,” IEEE Trans. Autom. Control, vol. 62, no. 12, pp. 6529–6535, Dec. 2017. doi: 10.1109/TAC.2017.2705033
|
[28] |
F. Mehdifar, C. P. Bechlioulis, F. Hashemzadeh, and M. Baradarannia, “Prescribed performance distance-based formation control of multi-agent systems,” Automatica, vol. 119, p. 109086, Sep. 2020. doi: 10.1016/j.automatica.2020.109086
|
[29] |
H. Sai, Z. Xu, C. Xia, and X. Sun, “Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators,” Nonlinear Dyn., vol. 110, no. 1, pp. 431–448, Jun. 2022. doi: 10.1007/s11071-022-07650-w
|
[30] |
Z.-G. Zhou, D. Zhou, X.-N. Shi, R.-F. Li, and B.-Q. Kan, “Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation,” Int. J. Control, vol. 94, no. 1, pp. 223–234, Mar. 2021. doi: 10.1080/00207179.2019.1590644
|
[31] |
J. Tan and S. Guo, “Backstepping control with fixed-time prescribed performance for fixed wing UAV under model uncertainties and external disturbances,” Int. J. Control, vol. 95, no. 4, pp. 934–951, Oct. 2022. doi: 10.1080/00207179.2020.1831700
|
[32] |
G. Cui, W. Yang, J. Yu, Z. Li, and C. Tao, “Fixed-time prescribed performance adaptive trajectory tracking control for a QUAV,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 69, no. 2, pp. 494–498, Feb. 2022.
|
[33] |
Y. Wang, G. Luo, and D. Wang, “Observer-based fixed-time adaptive fuzzy control for SbW systems with prescribed performance,” Eng. Appl. Artif. Intell., vol. 114, p. 105026, Sep. 2022. doi: 10.1016/j.engappai.2022.105026
|
[34] |
Y. Zhang, C. Hua, and K. Li, “Disturbance observer-based fixed-time prescribed performance tracking control for robotic manipulator,” Int. J. Syst. Sci., vol. 50, no. 13, pp. 2437–2448, Sep. 2019. doi: 10.1080/00207721.2019.1622818
|
[35] |
J. Wu, W. Chen, and J. Li, “Global finite-time adaptive stabilization for nonlinear systems with multiple unknown control directions,” Automatica, vol. 69, pp. 298–307, 2016. doi: 10.1016/j.automatica.2016.03.005
|
[36] |
H. Yang and D. Ye, “Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism,” Inf. Sci., vol. 459, pp. 238–254, Aug. 2018. doi: 10.1016/j.ins.2018.04.016
|
[37] |
Y. Zhang and F. Wang, “Observer-based fixed-time neural control for a class of nonlinear systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2892–2902, Jul. 2022. doi: 10.1109/TNNLS.2020.3046865
|