IEEE/CAA Journal of Automatica Sinica
Citation: | L. Wang, Z. Li, L. Cao, G. Guo, and Z. Kong, “Controllability of multi-relational networks with heterogeneous dynamical nodes,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2476–2486, Dec. 2024. doi: 10.1109/JAS.2024.124404 |
[1] |
J. Lu, G. Wen, R. Lu, Y. Wang, and S. Zhang, “Networked knowledge and complex networks: An engineering view,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 8, pp. 1366–1383, Aug. 2022. doi: 10.1109/JAS.2022.105737
|
[2] |
S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and J. Leskovec, “Mobility network models of COVID-19 explain inequities and inform reopening,” Nature, vol. 589, no. 7840, pp. 82–U54, Jan. 2021. doi: 10.1038/s41586-020-2923-3
|
[3] |
M. Feng, Y. Li, F. Chen, and J. Kurths, “Heritable deleting strategies for birth and death evolving networks from a queueing system perspective,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 10, pp. 6662–6673, Oct. 2022. doi: 10.1109/TSMC.2022.3149596
|
[4] |
L. Wang, Z. Li, G. Zhao, G. Guo, and Z. Kong, “Input structure design for structural controllability of complex networks,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1571–1581, Jul. 2023. doi: 10.1109/JAS.2023.123504
|
[5] |
D. Siudak, “The effect of self-organizing map architecture based on the value migration network centrality measures on stock return. Evidence from the US market,” PLoS one, vol. 17, no. 11, Nov. 2022.
|
[6] |
M. Rinaldi, “Controllability of transportation networks,” Transp. Res. B, Methodol., vol. 118, pp. 381–406, Dec. 2018. doi: 10.1016/j.trb.2018.11.005
|
[7] |
A. Louni and K. P. Subbalakshmi, “Who spread that rumor: Finding the source of information in large online social networks with probabilistically varying internode relationship strengths,” IEEE Trans. Comput. Social. Syst., vol. 5, no. 2, pp. 335–343, Jun. 2018. doi: 10.1109/TCSS.2018.2801310
|
[8] |
L. Xiang, F. Chen, W. Ren, and G. Chen, “Advances in network controllability,” IEEE Circuits Syst. Mag., vol. 19, no. 2, pp. 8–32, 2019. doi: 10.1109/MCAS.2019.2909446
|
[9] |
B. She, S. Mehta, C. Ton, and Z. Kan, “Energy-related controllability of signed complex networks with Laplacian dynamics,” IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3325–3330, Jul. 2021. doi: 10.1109/TAC.2020.3017739
|
[10] |
B. She, S. S. Mehta, E. Doucette, C. Ton, and Z. Kan, “Characterizing energy-related controllability of composite complex networks via graph product,” IEEE Trans. Autom. Control, vol. 66, no. 7, pp. 3205–3212, Jul. 2021. doi: 10.1109/TAC.2020.3028840
|
[11] |
M. V. Srighakollapu, R. K. Kalaimani, and R. Pasumarthy, “Optimizing driver nodes for structural controllability of temporal networks,” IEEE Trans. Control Netw. Syst., vol. 9, no. 1, pp. 380–389, Mar. 2022. doi: 10.1109/TCNS.2021.3106454
|
[12] |
F. D. Rossa and P. DeLellis, “Stochastic pinning controllability of noisy complex networks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 4, pp. 1678–1687, Dec. 2020. doi: 10.1109/TCNS.2020.2995818
|
[13] |
P. Arebi, A. Fatemi, and R. Ramezani, “Event stream controllability on event-based complex networks,” Expert Syst. Appl., vol. 213, Mar. 2023.
|
[14] |
Y. Y. Liu, J. J. Slotine, and A. L. Barabasi, “Controllability of complex networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011. doi: 10.1038/nature10011
|
[15] |
Z. Yuan, C. Zhao, Z. Di, W. Wang, and Y. Lai, “Exact controllability of complex networks,” Nat. Commun., vol. 4, no. 1, pp. 24–47, Sept. 2013.
|
[16] |
L. Wang, G. Chen, X. Wang, and W. K. S. Tang, “Controllability of networked MIMO systems,” Automatica, vol. 69, pp. 405–409, Jul. 2016. doi: 10.1016/j.automatica.2016.03.013
|
[17] |
Y. Hao, Z. Duan, and G. Chen, “Further on the controllability of networked MIMO LTI systems,” Int. J. Robust Nonlinear Control, vol. 28, no. 5, pp. 1778–1788, Mar. 2018. doi: 10.1002/rnc.3986
|
[18] |
Y. Hao, Z. Duan, G. Chen, and F. Wu, “New controllability conditions for networked identical LTI systems,” IEEE Trans. Autom. Control, vol. 64, no. 10, pp. 4223–4228, Oct. 2019. doi: 10.1109/TAC.2019.2893899
|
[19] |
J. Wu, X. Li, and G. Chen, “Controllability of deep-coupling dynamical networks,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 5211–5222, Dec. 2020. doi: 10.1109/TCSI.2020.2999451
|
[20] |
K. Song, G. Li, X. Chen, L. Deng, G. Xiao, F. Zeng, and J. Pei, “Target controllability of two-layer multiplex networks based on network flow theory,” IEEE Trans. Cybern., vol. 51, no. 5, pp. 2699–2711, May 2021. doi: 10.1109/TCYB.2019.2906700
|
[21] |
J. Ding, C. Wen, G. Li, P. Tu, D. Ji, Y. Zou, and J. Huang, “Target controllability in multilayer networks via minimum-cost maximum-flow method,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 1949–1962, May 2021. doi: 10.1109/TNNLS.2020.2995596
|
[22] |
T. Zhou, “On the controllability and observability of networked dynamic systems,” Automatica, vol. 52, no. 1, pp. 63–75, 2015.
|
[23] |
L. Xiang, P. Wang, F. Chen, and G. Chen, “Controllability of directed networked MIMO systems with heterogeneous dynamics,” IEEE Trans. Control Netw. Syst., vol. 7, no. 2, pp. 807–817, Jun. 2020. doi: 10.1109/TCNS.2019.2948994
|
[24] |
Z. Kong, L. Cao, L. Wang, and G. Guo, “Controllability of heterogeneous networked systems with nonidentical inner-coupling matrices,” IEEE Trans. Control Netw. Syst., vol. 9, no. 2, pp. 867–878, Jun. 2022. doi: 10.1109/TCNS.2021.3124907
|
[25] |
J. Mu, J. Wu, N. Li, X. Zhang, and S. Li, “Structural controllability of networked systems with general heterogeneous subsystems,” Asian J. Control, vol. 24, no. 3, pp. 1321–1332, May 2022. doi: 10.1002/asjc.2528
|
[26] |
D. Delpini, S. Battiston, M. Riccaboni, G. Gabbi, F. Pammoli, and G. Caldarelli, “Evolution of controllability in interbank networks,” Sci. Rep., vol. 3, no. 1, p. 1626, Apr. 2013. doi: 10.1038/srep01626
|
[27] |
S. Battiston, M. Puliga, R. Kaushik, P. Tasca, and G. Caldarelli, “DebtRank: Too central to fail? Financial networks, the FED and systemic risk,” Sci. Rep., vol. 2, no. 541, pp. 1–6, Aug. 2012.
|
[28] |
N. N. Chung and L. Y. Chew, “Modelling Singapore COVID-19 pandemic with a SEIR multiplex network model,” Sci. Rep., vol. 11, no. 1, May 2021.
|
[29] |
X. Zhao, Q. Zhou, A. Wang, F. Zhu, Z. Meng, and C. Zuo, “The impact of awareness diffusion on the spread of COVID-19 based on a two-layer SEIR/V-UA epidemic model,” J. Med. Virol., vol. 93, no. 7, pp. 4342–4350, Jul. 2021. doi: 10.1002/jmv.26945
|
[30] |
L. He and L. Zhu, “Modeling the COVID-19 epidemic and awareness diffusion on multiplex networks,” Commun. Theor. Phys., vol. 73, no. 3, May 2021.
|
[31] |
M. Roman, Advanced Linear Algebra, New York: Springer, 2005.
|
[32] |
C. T. Chen, Linear System Theory and Design, Oxford University Press, 1999.
|
[33] |
S. H. Belkacem, Linear Algebra, Birkhauser Cham, 2017.
|