IEEE/CAA Journal of Automatica Sinica
Citation: | W.-H. Chen, “Goal-oriented control systems (GOCS): From HOW to WHAT,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 816–819, Apr. 2024. doi: 10.1109/JAS.2024.124323 |
[1] |
P. Antsaklis, “Autonomy and metrics of autonomy,” Annual Reviews in Control, vol. 49, pp. 15–26, 2020. doi: 10.1016/j.arcontrol.2020.05.001
|
[2] |
S. of Automotive Engineers, “Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles,” Tech. Rep., 2021.
|
[3] |
W.-H. Chen, C. Rhodes, and C. Liu, “Dual control for exploitation and exploration (DCEE) in autonomous search,” Automatica, vol. 133, p. 109851, 2021. doi: 10.1016/j.automatica.2021.109851
|
[4] |
A. Ceballos, S. Bensalem, A. Cesta, L. De Silva, S. Fratini, F. Ingrand, J. Ocon, A. Orlandini, F. Py, K. Rajan et al., “A goal-oriented autonomous controller for space exploration,” ASTRA, vol. 11, 2011.
|
[5] |
D. Nesic, A. Mohammadi, and C. Manzie, “A framework for extremum seeking control of systems with parameter uncertainties,” IEEE Trans. Automatic Control, vol. 58, no. 2, pp. 435–448, 2012.
|
[6] |
T. Faulwasser, L. Grüne, M. A. Müller et al., “Economic nonlinear model predictive control,” Foundations and Trends® in Systems and Control, vol. 5, no. 1, pp. 1–98, 2018.
|
[7] |
Y. Gao, A. Abate, F. J. Jiang, M. Giacobbe, L. Xie, and K. H. Johansson, “Temporal logic trees for model checking and control synthesis of uncertain discrete-time systems,” IEEE Trans. Automatic Control, vol. 67, no. 10, pp. 5071–5086, 2021.
|
[8] |
M. Khaled and M. Zamani, “Cloud-ready acceleration of formal method techniques for cyber–physical systems,” IEEE Design &Test, vol. 38, no. 5, pp. 25–34, 2020.
|
[9] |
T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon temporal logic planning,” IEEE Trans. Automatic Control, vol. 57, no. 11, pp. 2817–2830, 2012. doi: 10.1109/TAC.2012.2195811
|
[10] |
Z. Huang, W. Lan, and X. Yu, “A formal control framework of autonomous vehicle for signal temporal logic tasks and obstacle avoidance,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 1, pp. 1930–1940, 2024.
|
[11] |
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT press, 2018.
|
[12] |
B. Kiumars, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal and autonomous control using reinforcement learning: A survey,” IEEE Trans. Neural Networks and Learning Systems, vol. 29, no. 6, pp. 767–778, 2018.
|
[13] |
W.-H. Chen, “Perspective view of autonomous control in unknown environment: Dual control for exploitation and exploration vs reinforcement learning,” Neurocomputing, vol. 497, pp. 50–63, 2022. doi: 10.1016/j.neucom.2022.04.131
|
[14] |
X. Fang, J. Jiang, and W.-H. Chen, “Model predictive control with wind preview for aircraft forced landing,” IEEE Trans. Aerospace and Electronic Systems, 2023.
|
[15] |
C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus, R. Berriel, T. M. Paixao, F. Mutz et al., “Self-driving cars: A survey,” Expert Systems with Applications, vol. 165, p. 113816, 2021. doi: 10.1016/j.eswa.2020.113816
|
[16] |
H. X. Liu and S. Feng, “” Curse of rarity” for autonomous vehicles,” arXiv preprint arXiv: 2207.02749, 2022.
|