A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 5
May  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
K. Chen, R. Chai, R. Zhang, Z. Xing, Y. Xia, and G. Liu, “A data-driven real-time trajectory planning and control methodology for UGVs using LSTMRDNN,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1292–1294, May 2024. doi: 10.1109/JAS.2024.124269
Citation: K. Chen, R. Chai, R. Zhang, Z. Xing, Y. Xia, and G. Liu, “A data-driven real-time trajectory planning and control methodology for UGVs using LSTMRDNN,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 5, pp. 1292–1294, May 2024. doi: 10.1109/JAS.2024.124269

A Data-Driven Real-Time Trajectory Planning and Control Methodology for UGVs Using LSTMRDNN

doi: 10.1109/JAS.2024.124269
More Information
  • loading
  • [1]
    R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. Chen, “Six-DoF spacecraft optimal trajectory planning and real-time attitude control: A deep neural network-based approach,” IEEE Trans. Neural Networks and Learning Systems, vol. 31, no. 11, pp. 5005–5013, 2019.
    [2]
    L. Chen, Y. Shan, W. Tian, B. Li, and D. Cao, “A fast and efficient double-tree RRT*-like sampling-based planner applying on mobile robotic systems,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 6, pp. 2568–2578, 2018. doi: 10.1109/TMECH.2018.2821767
    [3]
    Y. Guo, D. Yao, B. Li, Z. He, H. Gao, and L. Li, “Trajectory planning for an autonomous vehicle in spatially constrained environments,” IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 10, pp. 18326–18336, 2022. doi: 10.1109/TITS.2022.3164548
    [4]
    B. Li, L. Li, T. Acarman, Z. Shao, and M. Yue, “Optimization-based maneuver planning for a tractor-trailer vehicle in a curvy tunnel: A weak reliance on sampling and search,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 706–713, 2021.
    [5]
    G. P. Kontoudis and K. G. Vamvoudakis, “Kinodynamic motion planning with continuous-time q-learning: An online, model-free, and safe navigation framework,” IEEE Trans. Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3803–3817, 2019. doi: 10.1109/TNNLS.2019.2899311
    [6]
    J. Fan, X. Chen, and X. Liang, “UAV trajectory planning based on bidirectional APF-RRT* algorithm with goal-biased,” Expert Systems With Applications, vol. 213, p. 119137, 2023. doi: 10.1016/j.eswa.2022.119137
    [7]
    J. Wang, J. Wang, and Q.-L. Han, “Receding-horizon trajectory planning for under-actuated autonomous vehicles based on collaborative neurodynamic optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 1909–1923, 2022. doi: 10.1109/JAS.2022.105524
    [8]
    Z. Wang, L. B. Freidovich, and H. Zhang, “Periodic motion planning and control for double rotary pendulum via virtual holonomic constraints,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 1, pp. 291–298, 2017.
    [9]
    W. Hu, Z. Deng, D. Cao, B. Zhang, A. Khajepour, L. Zeng, and Y. Wu, “Probabilistic lane-change decision-making and planning for autonomous heavy vehicles,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2161–2173, 2022. doi: 10.1109/JAS.2022.106049
    [10]
    C. Sánchez-Sánchez and D. Izzo, “Real-time optimal control via deep neural networks: Study on landing problems,” J. Guidance,Control,and Dynamics, vol. 41, no. 5, pp. 1122–1135, 2018. doi: 10.2514/1.G002357
    [11]
    R. Chai, H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox, “Design and experimental validation of deep reinforcement learning-based fast trajectory planning and control for mobile robot in unknown environment,” IEEE Trans. Neural Networks and Learning Systems, 2022. DOI: 10.1109/TNNLS.2022.3209154
    [12]
    K. J. Åström and B. Wittenmark, Adaptive Control. New York, USA: Dover Publications, 2008.
    [13]
    K. Vamvoudakis, F. Lewis, and S. S. Ge, “Neural networks in feedback control systems,” Mechanical EngineersHandbook, pp. 1–52, 2014.
    [14]
    D. Nodland, H. Zargarzadeh, and S. Jagannathan, “Neural network-based optimal adaptive output feedback control of a helicopter UAV,” IEEE Trans. Neural Networks and Learning Systems, vol. 24, no. 7, pp. 1061–1073, 2013. doi: 10.1109/TNNLS.2013.2251747
    [15]
    R. Chai, A. Tsourdos, S. Chai, Y. Xia, A. Savvaris, and C. Chen, “Multiphase overtaking maneuver planning for autonomous ground vehicles via a desensitized trajectory optimization approach,” IEEE Trans. Industrial Informatics, vol. 19, no. 1, pp. 74–87, 2022.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (223) PDF downloads(70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return