A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 4
Apr.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
X. Xue, D. Zhou, X. Yu, G. Wang, J. Li, X. Xie, L. Cui, and  F.-Y. Wang,  “Computational experiments for complex social systems: Experiment design and generative explanation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1022–1038, Apr. 2024. doi: 10.1109/JAS.2024.124221
Citation: X. Xue, D. Zhou, X. Yu, G. Wang, J. Li, X. Xie, L. Cui, and  F.-Y. Wang,  “Computational experiments for complex social systems: Experiment design and generative explanation,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1022–1038, Apr. 2024. doi: 10.1109/JAS.2024.124221

Computational Experiments for Complex Social Systems: Experiment Design and Generative Explanation

doi: 10.1109/JAS.2024.124221
Funds:  This work was supported in part by the National Key Research and Development Program of China (2021YFF0900800), the National Natural Science Foundation of China (61972276, 62206116, 62032016), the New Liberal Arts Reform and Practice Project of National Ministry of Education (2021170002), the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems (20210101), and Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student (C1-2022-010)
More Information
  • Powered by advanced information technology, more and more complex systems are exhibiting characteristics of the cyber-physical-social systems (CPSS). In this context, computational experiments method has emerged as a novel approach for the design, analysis, management, control, and integration of CPSS, which can realize the causal analysis of complex systems by means of “algorithmization” of “counterfactuals”. However, because CPSS involve human and social factors (e.g., autonomy, initiative, and sociality), it is difficult for traditional design of experiment (DOE) methods to achieve the generative explanation of system emergence. To address this challenge, this paper proposes an integrated approach to the design of computational experiments, incorporating three key modules: 1) Descriptive module: Determining the influencing factors and response variables of the system by means of the modeling of an artificial society; 2) Interpretative module: Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena; 3) Predictive module: Building a meta-model that is equivalent to artificial society to explore its operating laws. Finally, a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach, which can reveal the social impact of algorithmic behavior on “rider race”.


  • loading
  • Xiao Xue and Deyu Zhou contributed equally to this work.
  • [1]
    Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities,” IEEE Commun. Surv. Tutorials, vol. 22, no. 1, pp. 389–425, 2020. doi: 10.1109/COMST.2019.2959013
    F.-Y. Wang, “The emergence of intelligent enterprises: From CPS to CPSS,” IEEE Intell. Syst., vol. 25, no. 4, pp. 85–88, Jul.–Aug. 2010. doi: 10.1109/MIS.2010.104
    X. Xue, X.-N. Yu, D.-Y. Zhou, P. Chao, X. Wang, Z.-B. Zhou, and F.-Y. Wang, “Computational experiments: Past, present and perspective,” Acta Autom. Sinica, vol. 49, no. 2, pp. 246–271, Feb. 2023.
    X. Xue, X. Yu, and F.-Y. Wang, “ChatGPT chats on computational experiments: From interactive intelligence to imaginative intelligence for design of artificial societies and optimization of foundational models,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 6, pp. 1357–1360, Jun. 2023. doi: 10.1109/JAS.2023.123585
    X. Xue, Y. Guo, S. Chen, and S. Wang, “Analysis and controlling of manufacturing service ecosystem: A research framework based on the parallel system theory,” IEEE Trans. Serv. Comput., vol. 14, no. 6, pp. 1598–1611, Nov.-Dec. 2021. doi: 10.1109/TSC.2019.2917445
    M. Kahng, N. Thorat, D. H. Chau, F. B. Viégas, and M. Wattenberg, “GAN Lab: Understanding complex deep generative models using interactive visual experimentation,” IEEE Trans. Visualization Comput. Graphics, vol. 25, no. 1, pp. 310–320, Jan. 2019. doi: 10.1109/TVCG.2018.2864500
    D. Lazer, A. Pentland, L. Adamic, S. Aral, A. L. Barabási, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, and M. Van Alstyne, “Computational social science,” Science, vol. 323, no. 5915, pp. 721–723, Feb. 2009. doi: 10.1126/science.1167742
    J. M. Hofman, D. J. Watts, S. Athey, F. Garip, T. L. Griffiths, J. Kleinberg, H. Margetts, S. Mullainathan, M. J. Salganik, S. Vazire, A. Vespignani, and T. Yarkoni, “Integrating explanation and prediction in computational social science,” Nature, vol. 595, no. 7866, pp. 181–188, Jun. 2021. doi: 10.1038/s41586-021-03659-0
    C. Cioffi-Revilla and M. Rouleau, “MASON RebeLand: An agent-based model of politics, environment, and insurgency,” Int. Stud. Rev., vol. 12, no. 1, pp. 31–52, Mar. 2010. doi: 10.1111/j.1468-2486.2009.00911.x
    X. Xue, G. Li, D. Zhou, Y. Zhang, L. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun, X. Lu, and S. Chen, “Research roadmap of service ecosystems: A crowd intelligence perspective,” Int. J. Crowd Sci., vol. 6, no. 4, pp. 195–222, Nov. 2022. doi: 10.26599/IJCS.2022.9100026
    W. Zhang, A. Valencia, and N.-B. Chang, “Synergistic integration between machine learning and agent-based modeling: A multidisciplinary review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 5, pp. 2170–2190, May 2023. doi: 10.1109/TNNLS.2021.3106777
    X. Xue, F. Chen, D. Zhou, X. Wang, M. Lu, and F.-Y. Wang, “Computational experiments for complex social systems—Part I: The customization of computational model,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 5, pp. 1330–1344, Oct. 2022. doi: 10.1109/TCSS.2021.3125287
    X. Xue, Z. Chen, S. Wang, Z. Feng, Y. Duan, and Z. Zhou, “Value entropy: A systematic evaluation model of service ecosystem evolution,” IEEE Trans. Serv. Comput., vol. 15, no. 4, pp. 1760–1773, Jul.–Aug. 2022. doi: 10.1109/TSC.2020.3016660
    M. J. Salganik, P. S. Dodds, and D. J. Watts, “Experimental study of inequality and unpredictability in an artificial cultural market,” Science, vol. 311, no. 5762, pp. 854–856, Feb. 2006. doi: 10.1126/science.1121066
    X. Xue, S. Wang, L. Zhang, Z. Feng, and Y. Guo, “Social learning evolution (SLE): Computational experiment-based modeling framework of social manufacturing,” IEEE Trans. Ind. Inf., vol. 15, no. 6, pp. 3343–3355, Jun. 2019. doi: 10.1109/TII.2018.2871167
    C. Peng, X. Yu, W. Ma, H. Kaneko, L. Meng, Y. Zhao, and X. Xue, “Computational experiments: Virtual production and governance tool for metaverse,” Int. J. Crowd Sci., vol. 7, no. 4, pp. 158–167, Dec. 2023. doi: 10.26599/IJCS.2023.9100023
    S. N. Politis, P. Colombo, G. Colombo, and D. M. Rekkas, “Design of experiments (DoE) in pharmaceutical development,” Drug Dev. Ind. Pharm., vol. 43, no. 6, pp. 889–901, Feb. 2017. doi: 10.1080/03639045.2017.1291672
    J. Ferber and O. Gutknecht, “A meta-model for the analysis and design of organizations in multi-agent systems,” in Proc. Int. Conf. Multi Agent Systems, Paris, France, 1998, pp. 128–135.
    A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” IEEE Access, vol. 6, pp. 28573–28593, Apr. 2018. doi: 10.1109/ACCESS.2018.2831228
    D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under risk,” Econometrica, vol. 47, no. 2, pp. 263–292, Mar. 1979. doi: 10.2307/1914185
    D. Zhou, X. Xue, and Z. Zhou, “SLE2: The improved social learning evolution model of cloud manufacturing service ecosystem,” IEEE Trans. Ind. Inf., vol. 18, no. 12, pp. 9017–9026, Dec. 2022. doi: 10.1109/TII.2022.3173053
    M. Lu, S. Chen, X. Xue, X. Wang, Y. Zhang, Y. Zhang, and F.-Y. Wang, “Computational experiments for complex social systems—Part II: The evaluation of computational models,” IEEE Trans. Comput. Soc. Syst., vol. 9, no. 4, pp. 1224–1236, Aug. 2022. doi: 10.1109/TCSS.2021.3121323
    R. Sanders, “The pareto principle: Its use and abuse,” J. Serv. Mark., vol. 1, no. 2, pp. 37–40, Feb. 1987. doi: 10.1108/eb024706
    J. B. Ullman and P. M. Bentler, “Structural equation modeling,” in Handbook of Psychology, 2nd ed. J. A. Schinka, W. F. Velicer, and I. B. Weiner, Eds. Hoboken, USA: John Wiley & Sons, 2012.
    L. Du, “Research On Efficient Experimental Design Methods For Complex Simulation System,” Harbin Institute of Technology, 2018.
    J. P. C. Kleijnen, Design and Analysis of Simulation Experiments. L. G. Zhang, J. K. Zhang, and X. K. Liu, trans. Beijing: Electronic Industry Press, 2010.
    C. Z. Mooney, Monte Carlo Simulation. Los Angeles, USA: Sage, 1997.
    C. H. Yu, “Resampling methods: Concepts, applications, and justification,” Pract. Assess. Res. Eval., vol. 8, p. 19, 2002.
    G. Ten Broeke, G. Van Voorn, and A. Ligtenberg, “Which sensitivity analysis method should I use for my agent-based model,” J. Artif. Soc. Soc. Simul., vol. 19, no. 1, p. 5, Jan. 2016. doi: 10.18564/jasss.2857
    I. Salle and M. Yıldızoğlu, “Efficient sampling and meta-modeling for computational economic models,” Comput. Econ., vol. 44, no. 4, pp. 507–536, Dec. 2014. doi: 10.1007/s10614-013-9406-7
    M. Edali and G. Yücel, “Automated analysis of regularities between model parameters and output using support vector regression in conjunction with decision trees,” J. Artif. Soc. Soc. Simul., vol. 21, no. 4, p. 1, Oct. 2018. doi: 10.18564/jasss.3786
    K. N. Cui, X. L. Zheng, D. Wen, and X. L. Zhao, “Researches and applications of computational experiments,” Acta Autom. Sinica, vol. 39, no. 8, pp. 1157–1169, Aug. 2013.
    J. P. C. Kleijnen, W. Van Beers, and I. Van Nieuwenhuyse, “Expected improvement in efficient global optimization through bootstrapped kriging,” J. Global Optim., vol. 54, no. 1, pp. 59–73, Sept. 2012. doi: 10.1007/s10898-011-9741-y
    K.-T. Fang, R. Li, and A. Sudjianto, Design and Modeling for Computer Experiments. Boca Raton: Chapman & Hall/CRC, 2006.
    F. Zhang and L. J. O’Donnell, “Support vector regression,” in Machine Learning, A. Mechelli and S. Vieira, Eds. Amsterdam: Elsevier, 2020, pp. 123-140.
    S. M. Clarke, J. H. Griebsch, and T. W. Simpson, “Analysis of support vector regression for approximation of complex engineering analyses,” J. Mech. Des., vol. 127, no. 6, pp. 1077–1087, Nov. 2005. doi: 10.1115/1.1897403
    Y. F. Li, S. H. Ng, M. Xie, and T. N. Goh, “A systematic comparison of metamodeling techniques for simulation optimization in decision support systems,” Appl. Soft Comput., vol. 10, no. 4, pp. 1257–1273, Sept. 2010. doi: 10.1016/j.asoc.2009.11.034
    N. Villa-Vialaneix, M. Follador, M. Ratto, and A. Leip, “A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops,” Environ. Modell. Software, vol. 34, pp. 51–66, Jun. 2012. doi: 10.1016/j.envsoft.2011.05.003
    N. Barakat and A. P. Bradley, “Rule extraction from support vector machines: A review,” Neurocomputing, vol. 74, pp. 1–3, Dec. 2010. doi: 10.1016/j.neucom.2010.08.007
    L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees. New York, USA: CRC Press, 1984.
    E. Alpaydin, Introduction to Machine Learning. Cambridge, USA: The MIT Press, 2014.
    P. Sun, “Your order, their labor: An exploration of algorithms and laboring on food delivery platforms in China,” Chin. J. Commun., vol. 12, no. 3, pp. 308–323, Mar. 2019. doi: 10.1080/17544750.2019.1583676


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (96) PDF downloads(41) Cited by()


    • It is difficult for traditional design of experiment methods to achieve the generative explanation of system emergence
    • We propose an integrated approach to the design of computational experiments, incorporating three key modules: descriptive module, interpretative module, and predictive module


    DownLoad:  Full-Size Img  PowerPoint