A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 2
Feb.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Y. Xie, Y. Zhang, W.-J. Lee, Z. Lin, and  Y. Shamash,  “Virtual power plants for grid resilience: A concise overview of research and applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 329–343, Feb. 2024. doi: 10.1109/JAS.2024.124218
Citation: Y. Xie, Y. Zhang, W.-J. Lee, Z. Lin, and  Y. Shamash,  “Virtual power plants for grid resilience: A concise overview of research and applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 329–343, Feb. 2024. doi: 10.1109/JAS.2024.124218

Virtual Power Plants for Grid Resilience: A Concise Overview of Research and Applications

doi: 10.1109/JAS.2024.124218
Funds:  This work relates to Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research
More Information
  • The power grid is undergoing a transformation from synchronous generators (SGs) toward inverter-based resources (IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants (VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources (DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system (MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.

     

  • loading
  • [1]
    S. Ziaeinejad, M. Mousavi, A. Mehrizi-Sani, E. Ramasubramanian, and E. Farantatos, “Power sharing for transmission systems with 100% inverter-based generating resources,” IET Gener. Transm. Dis., vol. 14, no. 26, pp. 6504–6511, Dec. 2020. doi: 10.1049/iet-gtd.2020.0610
    [2]
    B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: Operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power Energy Mag., vol. 15, no. 2, pp. 61–73, Mar.–Apr. 2017. doi: 10.1109/MPE.2016.2637122
    [3]
    E. Farantatos and D. Ramasubramanian, “Program on technology innovation: Grid operation with 100% inverter-interfaced supply resources,” Electric Power Research Institute (EPRI), Palo Alto, USA, Tech. Rep., 2018.
    [4]
    J. D. S. Partner and R. P. G. Associate, “FERC orders increased reliability regulation for renewables,” [Online]. Available: https://www.morganlewis.com/blogs/powerandpipes/2022/12/ferc-orders-increased-reliability-regulation-for-renewables.
    [5]
    “Long-term west Texas export study,” [Online]. Available: https://www.ercot.com/files/docs/2022/01/14/Long-Term-West-Texas-Export-Study-Report.pdf.
    [6]
    N. Xue, X. Wu, S. Gumussoy, U. Muenz, A. Mesanovic, C. Heyde, Z. Dong, G. Bharati, S. Chakraborty, L. Cockcroft, and L. Dangelmaier, “Dynamic security optimization for N-1 secure operation of Hawai ‘i island system with 100% inverter-based resources,” IEEE Trans. Smart Grid, vol. 13, no. 5, pp. 4009–4021, Sept. 2022. doi: 10.1109/TSG.2021.3135232
    [7]
    F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations and challenges of low-inertia systems (Invited Paper),” in Proc. Power Systems Computation Conf., Dublin, Ireland, 2018, pp. 1-25.
    [8]
    S. Eftekharnejad, V. Vittal, G. T. Heydt, B. Keel, and J. Loehr, “Impact of increased penetration of photovoltaic generation on power systems,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 893–901, May 2013. doi: 10.1109/TPWRS.2012.2216294
    [9]
    SEIA Comms Team, “The importance of VPPs to support America’s energy resilience,” [Online]. Available: https://www.seia.org/blog/importance-vpps-support-americas-energy-resilience.
    [10]
    J. B. Robb, “The reliability and resiliency of electric service in the united states in light of recent reliability assessments and alerts,” [Online]. Available: https://www.energy.senate.gov/services/files/D47C2B83-A0A7-4E0B-ABF2-9574D9990C11.
    [11]
    [12]
    [13]
    R. Hledik and K. Peters, “Real reliability - the value of virtual power - Ryan hledik Kate peters,” Brattle Group, USA, 2023.
    [14]
    [15]
    R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. doi: 10.1109/JPROC.2006.887293
    [16]
    K. H. Movric and F. L. Lewis, “Cooperative optimal control for multi-agent systems on directed graph topologies,” IEEE Trans. Automat. Control, vol. 59, no. 3, pp. 769–774, Mar. 2014. doi: 10.1109/TAC.2013.2275670
    [17]
    K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality,” Automatica, vol. 48, no. 8, pp. 1598–1611, Aug. 2012. doi: 10.1016/j.automatica.2012.05.074
    [18]
    H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 4, pp. 766–781, Apr. 2013. doi: 10.1109/JSAC.2013.130413
    [19]
    M. Liu, Y. Wan, V. G. Lopez, F. L. Lewis, G. A. Hewer, and K. Estabridis, “On the robustness of networked cooperative tracking systems,” Automatica, vol. 141, p. 110280, Jul. 2022. doi: 10.1016/j.automatica.2022.110280
    [20]
    S. Sundaram and B. Gharesifard, “Distributed optimization under adversarial nodes,” IEEE Trans. Automat. Control, vol. 64, no. 3, pp. 1063–1076, Mar. 2019. doi: 10.1109/TAC.2018.2836919
    [21]
    Y. Xie, S. Mou, and S. Sundaram, “Communication-efficient and resilient distributed Q-learning,” IEEE Trans. Neural Netw. Learn. Syst., 2023. DOI: 10.1109/TNNLS.2023.3292036
    [22]
    J. Shah, “Introducing VPPieces: Bite-sized blogs about virtual power plants,” [Online]. Available: https://www.energy.gov/lpo/articles/introducing-vppieces-bite-sized-blogs-about-virtual-power-plants.
    [23]
    J. C. Sarmiento-Vintimilla, E. Torres, D. M. Larruskain, and M. J. Pérez-Molina, “Applications, operational architectures and development of virtual power plants as a strategy to facilitate the integration of distributed energy resources,” Energies, vol. 15, no. 3, p. 775, Jan. 2022. doi: 10.3390/en15030775
    [24]
    S. Awerbuch and A. Preston. The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. New York, USA: Springer, 1997.
    [25]
    F. Lossin, “Customer engagement for utilities: Information systems to curb residential energy consumption,” Ph.D. dissertation, ETH Zürich, Zürich, Switzerland, 2016.
    [26]
    D. Pudjianto, C. Ramsay, and G. Strbac, “Virtual power plant and system integration of distributed energy resources,” IET Renew. Power Gener., vol. 1, no. 1, pp. 10–16, Mar. 2007. doi: 10.1049/iet-rpg:20060023
    [27]
    D. Pudjianto, C. Ramsay, and G. Strbac, “Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources,” Proc. Inst. Mech. Eng. Part A: J. Power Energy, vol. 222, no. 7, pp. 731–741, Nov. 2008. doi: 10.1243/09576509JPE556
    [28]
    M. Braun, “Virtual power plant functionalities demonstrations in a large laboratory for distributed energy resources,” in Proc. 20th Int. Conf. Electricity Distribution, Prague, Czech Republic, 2009, pp. 1–4.
    [29]
    A. F. Raab, M. Ferdowsi, E. Karfopoulos, I. G. Unda, S. Skarvelis-Kazakos, P. Papadopoulos, E. Abbasi, L. M. Cipcigan, N. Jenkins, N. Hatziargyriou, and K. Strunz, “Virtual power plant control concepts with electric vehicles,” in Proc. 16th Int. Conf. Intelligent System Applications to Power Systems, Hersonissos, Greece, 2011, pp. 1–6.
    [30]
    D. Pudjianto, G. Strbac, and D. Boyer, “Virtual power plant: Managing synergies and conflicts between transmission system operator and distribution system operator control objectives,” CIRED-Open Access Proc. J., vol. 2017, no. 1, pp. 2049–2052, Oct. 2017. doi: 10.1049/oap-cired.2017.0829
    [31]
    J. L. Paternina, E. R. Trujillo, and J. P. Anaya, “Integration of distributed energy resources through a virtual power plant as an alternative to micro grids. An approach to smart grids,” in Proc. Congreso Internacional de Innovación y Tendencias en Ingeniería, Bogota, Colombia, 2018, pp. 1–7.
    [32]
    X. Wang, Z. Liu, H. Zhang, Y. Zhao, J. Shi, and H. Ding, “A review on virtual power plant concept, application and challenges,” in Proc. IEEE Innovative Smart Grid Technologies-Asia, Chengdu, China, pp. 4328–4333, 2019.
    [33]
    S. K. Rathor and D. Saxena, “Energy management system for smart grid: An overview and key issues,” Int. J. Energy Res., vol. 44, no. 6, pp. 4067–4109, May 2020. doi: 10.1002/er.4883
    [34]
    “POSYTYF project,” [Online]. Available: https://posytyf-h2020.eu.
    [35]
    S. Li, W. Wu, and Y. Lin, “Robust data-driven and fully distributed Volt/VAR control for active distribution networks with multiple virtual power plants,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2627–2638, Jul. 2022. doi: 10.1109/TSG.2022.3166274
    [36]
    D. E. Ochoa, F. Galarza-Jimenez, F. Wilches-Bernal, D. A. Schoenwald, and J. I. Poveda, “Control systems for low-inertia power grids: A survey on virtual power plants,” IEEE Access, vol. 11, pp. 20560–20581, Feb. 2023. doi: 10.1109/ACCESS.2023.3249151
    [37]
    D. T. Ton and M. A. Smith, “The U.S. department of energy’s microgrid initiative,” Electr. J., vol. 25, no. 8, pp. 84–94, Oct. 2012. doi: 10.1016/j.tej.2012.09.013
    [38]
    J. Peng, B. Fan, J. Duan, Q. Yang, and W. Liu, “Adaptive decentralized output-constrained control of single-bus DC microgrids,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 424–432, Mar. 2019. doi: 10.1109/JAS.2019.1911387
    [39]
    W.-S. Im, C. Wang, W. Liu, L. Liu, and J.-M. Kim, “Distributed virtual inertia based control of multiple photovoltaic systems in autonomous microgrid,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 512–519, Jul. 2017. doi: 10.1109/JAS.2016.7510031
    [40]
    R. Carli and M. Dotoli, “Decentralized control for residential energy management of a smart users’ microgrid with renewable energy exchange,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 641–656, May 2019. doi: 10.1109/JAS.2019.1911462
    [41]
    T. Meng, Z. Lin, and Y. A. Shamash, “Distributed cooperative control of battery energy storage systems in DC microgrids,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 606–616, Mar. 2021. doi: 10.1109/JAS.2021.1003874
    [42]
    G. Chen and E. Feng, “Distributed secondary control and optimal power sharing in microgrids,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 304–312, Jul. 2015. doi: 10.1109/JAS.2015.7152665
    [43]
    B. Huang, Y. Li, H. Zhang, and Q. Sun, “Distributed optimal co-multi-microgrids energy management for energy internet,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 4, pp. 357–364, Oct. 2016. doi: 10.1109/JAS.2016.7510073
    [44]
    H. Li, C. Zang, P. Zeng, H. Yu, and Z. Li, “A stochastic programming strategy in microgrid cyber physical energy system for energy optimal operation,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 296–303, Jul. 2015. doi: 10.1109/JAS.2015.7152664
    [45]
    J. Liu, S. S. Yu, H. Hu, J. Zhao, and H. M. Trinh, “Demand-side regulation provision of virtual power plants consisting of interconnected microgrids through double-stage double-layer optimization,” IEEE Trans. Smart Grid, vol. 14, no. 3, pp. 1946–1957, May 2023. doi: 10.1109/TSG.2022.3203466
    [46]
    Australian Energy Market Operator Limited, “NEM virtual power plant (VPP) demonstrations program,” AEMO, 2018.
    [47]
    M. Elkhatib, J. Johnson, and D. Schoenwald, “Virtual power plant feedback control design for fast and reliable energy market and contingency reserve dispatch,” in Proc. 44th Photovoltaic Specialist Conf., Washington, USA, 2017, pp. 2969–2974.
    [48]
    North American Electric Reliability Corporation, “Distributed energy resources: Connection modeling and reliability considerations,” NERC, Atlanta, USA, 2017.
    [49]
    Information Technology Industry Council, “Benefits of information communications technology to energy infrastructure,” [Online]. Available: https://www.energy.gov/sites/prod/files/2015/04/f21/DOEQERITIcomments2014_0.pdf.
    [50]
    M. Zajc, M. Kolenc, and N. Suljanović, “Virtual power plant communication system architecture,” in Smart Power Distribution Systems: Control, Communication, and Optimization, Q. Yang, T. Yang, and W. Li, Eds. London, UK: Academic Press, 2019, pp. 231–250.
    [51]
    N. Etherden, V. Vyatkin, and M. H. J. Bollen, “Virtual power plant for grid services using IEC 61850,” IEEE Trans. Ind. Inf., vol. 12, no. 1, pp. 437–447, Feb. 2016. doi: 10.1109/TII.2015.2414354
    [52]
    J. Jazaeri, “Application of 5G technology in orchestration of virtual power plants and demand response,” in Proc. 4th Int. Symp. Advanced Electrical and Communication Technologies, Alkhobar, Saudi Arabia, 2021, pp. 1–4.
    [53]
    C. Feng, Q. Chen, Y. Wang, J. Ma, and X. Wang, “Frequency regulation service provision for virtual power plants through 5G RAN slicing,” IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4943–4956, Nov. 2022. doi: 10.1109/TSG.2022.3177765
    [54]
    W. Liu, H. Xu, X. Wang, S. Zhang, and T. Hu, “Optimal dispatch strategy of virtual power plants using potential game theory,” Energy Rep., vol. 8 Suppl 13, pp. 1069–1079, Nov. 2022.
    [55]
    M. Braun, “Provision of ancillary services by distributed generators: Technological and economic perspective,” Kassel university press GmbH, 2009, vol. 10.
    [56]
    S. Sučić, T. Dragičević, T. Capuder, and M. Delimar, “Economic dispatch of virtual power plants in an event-driven service-oriented framework using standards-based communications,” Electr. Power Syst. Res., vol. 81, no. 12, pp. 2108–2119, Dec. 2011. doi: 10.1016/j.jpgr.2011.08.008
    [57]
    C. Salazar, “Virtual power plants offer a climate-forward response to increasingly hot summers,” [Online]. Available: https://nextcity.org/urbanist-news/virtual-power-plants-offer-a-climate-forward-response-to-extreme-heat.
    [58]
    Stem, Inc., “Stem dispatches 86 mw of stored energy, enough to power 103, 000 homes, during 5 hour flex alert in California,” [Online]. Available: https://investors.stem.com/news/news-details/2022/Stem-Dispatches-86-MW-of-Stored-Energy-Enough-to-Power-103000-Homes-During-5-Hour-Flex-Alert-in-California/default.aspx.
    [59]
    J. S. John, “PG&E is testing different flavors of virtual power plant,” [Online]. Available: https://www.canarymedia.com/articles/grid-edge/pg-e-is-testing-different-flavors-of-virtual-power-plant.
    [60]
    AutoGrid, “AutoGrid deploys utility grade virtual power plant of residential batteries in southern California to support grid resiliency in SCE’s service area,” [Online]. Available: https://www.prnewswire.com/news-releases/autogrid-deploys-utility-grade-virtual-power-plant-of-residential-batteries-in-southern-california-to-support-grid-resiliency-in-sces-service-area-301505279.html.
    [61]
    “Shelter valley virtual power plant pilot project,” [Online]. Available: https://www.sdge.com/major-projects/shelter-valley-virtual-power-plant-pilot-project.
    [62]
    Swell Energy Inc., “PSEG long island virtual power plants,” [Online]. Available: https://www.swellenergy.com/pseglongislandbatterystoragerewards/.
    [63]
    Logical Buildings, “Logical buildings launches a $110M virtual power plant project facility to decarbonize multifamily buildings with smart energy technologies,” [Online]. Available: https://logicalbuildings.com/news/logical-buildings-launches-a-110m-virtual-power-plant-project-facility-to-decarbonize-multifamily-buildings-with-smart-energy-technologies.
    [64]
    J. Spector, “Texans can now sign up for virtual power plant to help grid, make money,” [Online]. Available: https://money.yahoo.com/texans-now-sign-virtual-power-083000361.html.
    [65]
    J. Engel, “Sunrun is building Puerto Rico’s first virtual power plant,” [Online]. Available: https://www.renewableenergyworld.com/solar/sunrun-is-building-puerto-ricos-first-virtual-power-plant/#gref.
    [66]
    [67]
    Australian Energy Market Operator Limited, “NEM virtual power plant (VPP) demonstrations program: Final design,” AEMO, 2019.
    [68]
    Australian Renewable Energy Agency, “Simply energy virtual power plant (VPP),” [Online]. Available: https://arena.gov.au/projects/simply-energy-virtual-power-plant-vpp/.
    [69]
    [70]
    X. Song, Y. Deng, F. Jiao, J. Shi, M. Cheng, Q. Xiang, C. Yue, Z. Zhang, S. Li, and H. Kim, “Virtual power plant implementation scheme in Shenzhen city,” Environ. Prog. Sustain. Energy, vol. 40, no. 5, p. e13598, Sep.–Oct. 2021. doi: 10.1002/ep.13598
    [71]
    Y. Zhang, F. Liu, Z. Wang, Y. Su, W. Wang, and S. Feng, “Robust scheduling of virtual power plant under exogenous and endogenous uncertainties,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1311–1325, Mar. 2022. doi: 10.1109/TPWRS.2021.3105418
    [72]
    Y. Wang, X. Ai, Z. Tan, L. Yan, and S. Liu, “Interactive dispatch modes and bidding strategy of multiple virtual power plants based on demand response and game theory,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 510–519, Jan. 2016. doi: 10.1109/TSG.2015.2409121
    [73]
    D. Aloini, E. Crisostomi, M. Raugi, and R. Rizzo, “Optimal power scheduling in a virtual power plant,” in Proc. 2nd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 2011, pp. 1–7.
    [74]
    Z. Ullah, Arshad, and H. Hassanin, “Modeling, optimization, and analysis of a virtual power plant demand response mechanism for the internal electricity market considering the uncertainty of renewable energy sources,” Energies, vol. 15, no. 14, p. 5296, Jul. 2022. doi: 10.3390/en15145296
    [75]
    N. Pourghaderi, M. Fotuhi-Firuzabad, M. Kabirifar, M. Moeini-Aghtaie, M. Lehtonen, and F. Wang, “Reliability-based optimal bidding strategy of a technical virtual power plant,” IEEE Syst. J., vol. 16, no. 1, pp. 1080–1091, Mar. 2022. doi: 10.1109/JSYST.2020.3044842
    [76]
    M. Gough, S. F. Santos, M. Lotfi, M. S. Javadi, G. J. Osório, P. Ashraf, R. Castro, and J. P. S. Catalão, “Operation of a technical virtual power plant considering diverse distributed energy resources,” IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 2547–2558, Mar.–Apr. 2022. doi: 10.1109/TIA.2022.3143479
    [77]
    F. H. Aghdam, M. S. Javadi, and J. P. S. Catalão, “Optimal stochastic operation of technical virtual power plants in reconfigurable distribution networks considering contingencies,” Int. J. Electr. Power Energy Syst., vol. 147, p. 108799, May 2023. doi: 10.1016/j.ijepes.2022.108799
    [78]
    M. Zdrilić, H. Pandžić, and I. Kuzle, “The mixed-integer linear optimization model of virtual power plant operation,” in Proc. 8th Int. Conf. European Energy Market, Zagreb, Croatia, 2011, pp. 467–471.
    [79]
    J.-F. Toubeau, T.-H. Nguyen, H. Khaloie, Y. Wang, and F. Vallée, “Forecast-driven stochastic scheduling of a virtual power plant in energy and reserve markets,” IEEE Syst. J., vol. 16, no. 4, pp. 5212–5223, Dec. 2022. doi: 10.1109/JSYST.2021.3114445
    [80]
    M. A. Tajeddini, A. Rahimi-Kian, and A. Soroudi, “Risk averse optimal operation of a virtual power plant using two stage stochastic programming,” Energy, vol. 73, pp. 958–967, Aug. 2014. doi: 10.1016/j.energy.2014.06.110
    [81]
    L. Ju, P. Li, Q. Tan, Z. Tan, and G. De, “A CVaR-Robust risk aversion scheduling model for virtual power plants connected with wind-photovoltaic-hydropower-energy storage systems, conventional gas turbines and incentive-based demand responses,” Energies, vol. 11, no. 11, p. 2903, Oct. 2018. doi: 10.3390/en11112903
    [82]
    M. Giuntoli and D. Poli, “Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 942–955, Jun. 2013. doi: 10.1109/TSG.2012.2227513
    [83]
    M. Song, X. Xu, C. Gao, Z. Yan, and M. Shahidehpour, “Two-stage stochastic scheduling of virtual power plant based on transactive control,” CSEE J. Power Energy Syst., 2023. DOI: 10.17775/CSEEJPES.2022.05300
    [84]
    H. Liang and J. Ma, “Data-driven resource planning for virtual power plant integrating demand response customer selection and storage,” IEEE Trans. Ind. Inf., vol. 18, no. 3, pp. 1833–1844, Mar. 2022. doi: 10.1109/TII.2021.3068402
    [85]
    M. Shabanzadeh, M.-K. Sheikh-El-Eslami, and M.-R. Haghifam, “A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant,” Appl. Energy, vol. 169, pp. 663–681, May 2016. doi: 10.1016/j.apenergy.2016.02.058
    [86]
    F. Fang, S. Yu, and X. Xin, “Data-driven-based stochastic robust optimization for a virtual power plant with multiple uncertainties,” IEEE Trans. Power Syst., vol. 37, no. 1, pp. 456–466, Jan. 2022. doi: 10.1109/TPWRS.2021.3091879
    [87]
    M. Zhang, Y. Xu, and H. Sun, “Optimal coordinated operation for a distribution network with virtual power plants considering load shaping,” IEEE Trans. Sustain. Energy, vol. 14, no. 1, pp. 550–562, Jan. 2023. doi: 10.1109/TSTE.2022.3220276
    [88]
    R. Krishna and S. Hemamalini, “Optimal energy management of virtual power plants with storage devices using teaching-and-learning-based optimization algorithm,” Int. Trans. Electr. Energy Syst., vol. 2022, p. 1727524, Aug. 2022.
    [89]
    M. K. Petersen, L. H. Hansen, J. Bendtsen, K. Edlund, and J. Stoustrup, “Heuristic optimization for the discrete virtual power plant dispatch problem,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2910–2918, Nov. 2014. doi: 10.1109/TSG.2014.2336261
    [90]
    L. Zhang, D. Liu, G. Cai, L. Lyu, L. H. Koh, and T. Wang, “An optimal dispatch model for virtual power plant that incorporates carbon trading and green certificate trading,” Int. J. Electr. Power Energy Syst., vol. 144, p. 108558, Jan. 2023. doi: 10.1016/j.ijepes.2022.108558
    [91]
    T. Chen, Q. Cui, C. Gao, Q. Hu, K. Lai, J. Yang, R. Lyu, H. Zhang, and J. Zhang, “Optimal demand response strategy of commercial building-based virtual power plant using reinforcement learning,” IET Gener. Transm. Dis., vol. 15, no. 16, pp. 2309–2318, Aug. 2021. doi: 10.1049/gtd2.12179
    [92]
    Z. Yi, Y. Xu, and C. Wu, “Model-free economic dispatch for virtual power plants: An adversarial safe reinforcement learning approach,” IEEE Trans. Power Syst., 2023. DOI: 10.1109/TPWRS.2023.3289334
    [93]
    Y. Kuang, X. Wang, H. Zhao, T. Qian, N. Li, J. Wang, and X. Wang, “Model-free demand response scheduling strategy for virtual power plants considering risk attitude of consumers,” CSEE J. Power Energy Syst., vol. 9, no. 2, pp. 516–528, Mar. 2023.
    [94]
    L. Lin, X. Guan, Y. Peng, N. Wang, S. Maharjan, and T. Ohtsuki, “Deep reinforcement learning for economic dispatch of virtual power plant in internet of energy,” IEEE Internet Things J., vol. 7, no. 7, pp. 6288–6301, Jul. 2020. doi: 10.1109/JIOT.2020.2966232
    [95]
    Z. Liang and Y. Guo, “Robust optimization based bidding strategy for virtual power plants in electricity markets,” in Proc. IEEE Power and Energy Society General Meeting, Boston, USA, 2016, pp. 1–5.
    [96]
    R. Caldon, A. R. Patria, and R. Turri, “Optimal control of a distribution system with a virtual power plant,” in Proc. Bulk Power System Dynamics and Control, Cortina d’Ampezzo, Italy, 2004, pp. 278–284.
    [97]
    M. Asghari, A. M. Fathollahi-Fard, S. M. J. Mirzapour Al-E-Hashem, and M. A. Dulebenets, “Transformation and linearization techniques in optimization: A state-of-the-art survey,” Mathematics, vol. 10, no. 2, p. 283, Jan. 2022. doi: 10.3390/math10020283
    [98]
    B. Mohammadi-Ivatloo, A. Rabiee, and A. Soroudi, “Nonconvex dynamic economic power dispatch problems solution using hybrid immune-genetic algorithm,” IEEE Syst. J., vol. 7, no. 4, pp. 777–785, Dec. 2013. doi: 10.1109/JSYST.2013.2258747
    [99]
    Z. Yang, K. Xie, J. Yu, H. Zhong, N. Zhang, and Q. Xia, “A general formulation of linear power flow models: Basic theory and error analysis,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 1315–1324, Mar. 2019. doi: 10.1109/TPWRS.2018.2871182
    [100]
    Y. Zhou, L. Zhao, I. B. M. Matsuo, and W.-J. Lee, “A dynamic weighted aggregation equivalent modeling approach for the DFIG wind farm considering the weibull distribution for fault analysis,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 5514–5523, Nov.–Dec. 2019. doi: 10.1109/TIA.2019.2929486
    [101]
    N. Gholizadeh, N. Kazemi, and P. Musilek, “A comparative study of reinforcement learning algorithms for distribution network reconfiguration with deep Q-learning-based action sampling,” IEEE Access, vol. 11, pp. 13714–13723, Feb. 2023. doi: 10.1109/ACCESS.2023.3243549
    [102]
    J. Johnson, J. Flicker, A. Castillo, C. Hansen, M. El-Khatib, D. Schoenwald, M. A. Smith, R. Graves, J. Henry, T. Hutchins, J. Stamp, D. Hart, A. Chavez, M. Burnett, J. Tabarez, C. Glatter, B. Xie, A. P. Meliopoulos, P. Huynh, H. Zhu, and K. Davis, “Design and evaluation of a secure virtual power plant,” Sandia Nat. Lab., Livermore, USA, SAND2017-10177, Sep. 2017.
    [103]
    H. Ghaffarzadeh, C. Stone, and A. Mehrizi-Sani, “Predictive set point modulation to mitigate transients in lightly damped balanced and unbalanced systems,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1041–1049, Mar. 2017.
    [104]
    M. Syed, A. Mehrizi-Sani, M. Robowska, E. Guillo-Sansano, D. Wang, and G. Burt, “Dynamically robust coordinated set point tracking of distributed DERs at point of common coupling,” Int. J. Electr. Power Energy Syst., vol. 143, p. 108481, Dec. 2022. doi: 10.1016/j.ijepes.2022.108481
    [105]
    W. Zhong, M. A. A. Murad, M. Liu, and F. Milano, “Impact of virtual power plants on power system short-term transient response,” Electr. Power Syst. Res., vol. 189, p. 106609, Dec. 2020. doi: 10.1016/j.jpgr.2020.106609
    [106]
    W. Zhong, J. Chen, M. Liu, M. A. A. Murad, and F. Milano, “Coordinated control of virtual power plants to improve power system short-term dynamics,” Energies, vol. 14, no. 4, p. 1182, Feb. 2021. doi: 10.3390/en14041182
    [107]
    H. H. Alhelou, P. Siano, M. Tipaldi, R. Iervolino, and F. Mahfoud, “Primary frequency response improvement in interconnected power systems using electric vehicle virtual power plants,” World Electr. Veh. J., vol. 11, no. 2, p. 40, May 2020. doi: 10.3390/wevj11020040
    [108]
    M. D. Galus, S. Koch, and G. Andersson, “Provision of load frequency control by PHEVs, controllable loads, and a cogeneration unit,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4568–4582, Oct. 2011. doi: 10.1109/TIE.2011.2107715
    [109]
    Z. Yi, Y. Xu, X. Wang, W. Gu, H. Sun, Q. Wu, and C. Wu, “An improved two-stage deep reinforcement learning approach for regulation service disaggregation in a virtual power plant,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2844–2858, Jul. 2022. doi: 10.1109/TSG.2022.3162828
    [110]
    J. Björk, D. V. Pombo, and K. H. Johansson, “Variable-speed wind turbine control designed for coordinated fast frequency reserves,” IEEE Trans. Power Syst., vol. 37, no. 2, pp. 1471–1481, Mar. 2022. doi: 10.1109/TPWRS.2021.3104905
    [111]
    J. Björk, K. H. Johansson, and F. Dörfler, “Dynamic virtual power plant design for fast frequency reserves: Coordinating hydro and wind,” IEEE Trans. Control Netw. Syst., vol. 10, no. 3, pp. 1266–1278, Sept. 2023. doi: 10.1109/TCNS.2022.3181553
    [112]
    V. Häberle, M. W. Fisher, E. Prieto-Araujo, and F. Dörfler, “Control design of dynamic virtual power plants: An adaptive divide-and-conquer approach,” IEEE Trans. Power Syst., vol. 37, no. 5, pp. 4040–4053, Sept. 2022. doi: 10.1109/TPWRS.2021.3139775
    [113]
    V. Häberle, A. Tayyebi, X. He, E. Prieto-Araujo, and F. Dörfler, “Gridforming and spatially distributed control design of dynamic virtual power plants,” arXiv preprint arXiv: 2202.02057, 2022.
    [114]
    B. Marinescu, O. Gomis-Bellmunt, F. Dörfler, H. Schulte, and L. Sigrist, “Dynamic virtual power plant: A new concept for grid integration of renewable energy sources,” IEEE Access, vol. 10, pp. 104980–104995, Sept. 2022. doi: 10.1109/ACCESS.2022.3205731
    [115]
    J. Y. Wen, Q. H. Wu, D. R. Turner, S. J. Cheng, and J. Fitch, “Optimal coordinated voltage control for power system voltage stability,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1115–1122, May 2004. doi: 10.1109/TPWRS.2004.825897
    [116]
    H. Früh, S. Müller, D. Contreras, K. Rudion, A. von Haken, and B. Surmann, “Coordinated vertical provision of flexibility from distribution systems,” IEEE Trans. Power Syst., vol. 38, no. 2, pp. 1834–1844, Mar. 2023. doi: 10.1109/TPWRS.2022.3162041
    [117]
    S. Riaz and P. Mancarella, “Modelling and characterisation of flexibility from distributed energy resources,” IEEE Trans. Power Syst., vol. 37, no. 1, pp. 38–50, Jan. 2022. doi: 10.1109/TPWRS.2021.3096971
    [118]
    Z. Tan, H. Zhong, X. Wang, and H. Tang, “An efficient method for estimating capability curve of virtual power plant,” CSEE J. Power Energy Syst., vol. 8, no. 3, pp. 780–788, May 2022.
    [119]
    X. Chen and N. Li, “Leveraging two-stage adaptive robust optimization for power flexibility aggregation,” IEEE Trans. Smart Grid, vol. 12, no. 5, pp. 3954–3965, Sept. 2021. doi: 10.1109/TSG.2021.3068341
    [120]
    Z. Tan, H. Zhong, Q. Xia, C. Kang, X. S. Wang, and H. Tang, “Estimating the robust P-Q capability of a technical virtual power plant under uncertainties,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4285–4296, Nov. 2020. doi: 10.1109/TPWRS.2020.2988069
    [121]
    J. Chen, M. Liu, and F. Milano, “Aggregated model of virtual power plants for transient frequency and voltage stability analysis,” IEEE Trans. Power Syst., vol. 36, no. 5, pp. 4366–4375, Sept. 2021. doi: 10.1109/TPWRS.2021.3063280
    [122]
    E. O. Kontis, Á. R. del Nozal, J. M. Mauricio, and C. S. Demoulias, “Provision of primary frequency response as ancillary service from active distribution networks to the transmission system,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 4971–4982, Nov. 2021. doi: 10.1109/TSG.2021.3103060
    [123]
    E. Dall-Anese, C. Zhao, S. Guggilam, S. Dhople, and Y. C. Chen, “Optimizing der participation in inertial and primary-frequency response,” Nat. Renew. Energy Lab., Golden, USA, Tech. Rep. NREL/JA-5D00-68606, Jan. 2018.
    [124]
    C. Feng, Q. Chen, Y. Wang, P.-Y. Kong, H. Gao, and S. Chen, “Provision of contingency frequency services for virtual power plants with aggregated models,” IEEE Trans. Smart Grid, vol. 14, no. 4, pp. 2798–2811, Jul. 2023. doi: 10.1109/TSG.2022.3229273
    [125]
    R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Trans. Automat. Control, vol. 51, no. 3, pp. 401–420, Mar. 2006. doi: 10.1109/TAC.2005.864190
    [126]
    J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Trans. Rob. Autom., vol. 20, no. 2, pp. 243–255, Apr. 2004. doi: 10.1109/TRA.2004.824698
    [127]
    K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, Mar. 2015. doi: 10.1016/j.automatica.2014.10.022
    [128]
    A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Trans. Automat. Control, vol. 60, no. 3, pp. 601–615, Mar. 2015. doi: 10.1109/TAC.2014.2364096
    [129]
    T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annu. Rev. Control, vol. 47, pp. 278–305, May 2019. doi: 10.1016/j.arcontrol.2019.05.006
    [130]
    J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 56–69, Jul. 2006. doi: 10.1109/MSP.2006.1657817
    [131]
    D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2941–2962, Nov. 2017. doi: 10.1109/TSG.2017.2720471
    [132]
    A. Joshi, S. Capezza, A. Alhaji, and M.-Y. Chow, “Survey on AI and machine learning techniques for microgrid energy management systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 7, pp. 1513–1529, Jul. 2023. doi: 10.1109/JAS.2023.123657
    [133]
    Z. Wang, W. Wei, J. Z. F. Pang, F. Liu, B. Yang, X. Guan, and S. Mei, “Online optimization in power systems with high penetration of renewable generation: Advances and prospects,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp. 839–858, Apr. 2023. doi: 10.1109/JAS.2023.123126
    [134]
    Y. Liu, Y. Li, Y. Wang, J. Zhu, H. B. Gooi, and H. Xin, “Distributed real-time multi-objective control of a virtual power plant in DC distribution systems,” IEEE Trans. Power Deliv., vol. 37, no. 3, pp. 1876–1887, Jun. 2022. doi: 10.1109/TPWRD.2021.3099834
    [135]
    P. M. Naina and K. S. Swarup, “Double-consensus-based distributed energy management in a virtual power plant,” IEEE Trans. Ind. Appl., vol. 58, no. 6, pp. 7047–7056, Nov.–Dec. 2022. doi: 10.1109/TIA.2022.3201060
    [136]
    Z. Tang, T. Liu, C. Zhang, Y. Zheng, and D. J. Hill, “Distributed control of active distribution networks for frequency support,” in Proc. Power Systems Computation Conf., Dublin, Ireland, 2018, pp. 1–7.
    [137]
    Z. Tang, D. J. Hill, and T. Liu, “Fully distributed voltage control in subtransmission networks via virtual power plants,” in Proc. IEEE Int. Conf. Smart Grid Communications, Sydney, Australia, 2016, pp. 193–198.
    [138]
    H. Xin, D. Gan, N. Li, H. Li, and C. Dai, “Virtual power plant-based distributed control strategy for multiple distributed generators,” IET Control Theory Appl., vol. 7, no. 1, pp. 90–98, Jan. 2013. doi: 10.1049/iet-cta.2012.0141
    [139]
    R. Zhang, B. Hredzak, and J. Fletcher, “Dynamic aggregation of energy storage systems into virtual power plants using distributed real-time clustering algorithm,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 11002–11013, Nov. 2021. doi: 10.1109/TIE.2020.3038074
    [140]
    R. Zhang and B. Hredzak, “Distributed dynamic clustering algorithm for formation of heterogeneous virtual power plants based on power requirements,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 192–204, Jan. 2021. doi: 10.1109/TSG.2020.3020163
    [141]
    M. Maanavi, A. Najafi, R. Godina, M. Mahmoudian, and E. M. G. Rodrigues, “Energy management of virtual power plant considering distributed generation sizing and pricing,” Appl. Sci., vol. 9, no. 14, p. 2817, Jul. 2019. doi: 10.3390/app9142817
    [142]
    A. Z. G. Seyyedi, S. A. Nejati, R. Parsibenehkohal, M. Hayerikhiyavi, F. Khalafian, and P. Siano, “Bi-level sitting and sizing of flexi-renewable virtual power plants in the active distribution networks,” Int. J. Electr. Power Energy Syst., vol. 137, p. 107800, May 2022. doi: 10.1016/j.ijepes.2021.107800
    [143]
    Z.-Z. Wu, Y.-P. Xu, Z.-L. Cheng, H.-W. Sun, B. Papari, S. S. Sajadi, and F. Qasim, “Optimal placement and sizing of the virtual power plant constrained to flexible-renewable energy proving in the smart distribution network,” Sustain. Energy Technol. Assess., vol. 49, p. 101688, Feb. 2022.
    [144]
    Z. Lin, Low Gain Feedback. London, UK: Springer, 1999.
    [145]
    H. Hu and Z. Lin, “Consensus of a class of discrete-time nonlinear multi-agent systems in the presence of communication delays,” ISA Trans., vol. 71, pp. 10–20, Nov. 2017. doi: 10.1016/j.isatra.2017.01.002
    [146]
    H. Song, D. Ding, H. Dong, and X. Yi, “Distributed filtering based on Cauchy-kernel-based maximum correntropy subject to randomly occurring cyber-attacks,” Automatica, vol. 135, p. 110004, Jan. 2022. doi: 10.1016/j.automatica.2021.110004
    [147]
    M. Xie, D. Ding, X. Ge, Q.-L. Han, H. Dong, and Y. Song, “Distributed platooning control of automated vehicles subject to replay attacks based on proportional integral observers,” IEEE/CAA J. Autom. Sinica, 2022. DOI: 10.1109/JAS.2022.105941
    [148]
    X. Chen, G. Qu, Y. Tang, S. Low, and N. Li, “Reinforcement learning for selective key applications in power systems: Recent advances and future challenges,” IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2935–2958, Jul. 2022. doi: 10.1109/TSG.2022.3154718
    [149]
    Y. Xie, S. Mou, and S. Sundaram, “Towards resilience for multi-agent QD-learning,” in Proc. 60th IEEE Conf. Decision and Control, Austin, USA, 2021, pp. 1250–1255.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (264) PDF downloads(78) Cited by()

    Highlights

    • Provides review of concept, development and latest progresses in VPP
    • Lists challenges faced in centralized VPP operation
    • Discusses opportunities of MAS-based VPP operation

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return