A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 4
Apr.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
T. Wang, Q. Chen, X. Lang, L. Xie, P. Li, and  H. Su,  “Detection of oscillations in process control loops from visual image space using deep convolutional networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 982–995, Apr. 2024. doi: 10.1109/JAS.2023.124170
Citation: T. Wang, Q. Chen, X. Lang, L. Xie, P. Li, and  H. Su,  “Detection of oscillations in process control loops from visual image space using deep convolutional networks,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 982–995, Apr. 2024. doi: 10.1109/JAS.2023.124170

Detection of Oscillations in Process Control Loops From Visual Image Space Using Deep Convolutional Networks

doi: 10.1109/JAS.2023.124170
Funds:  This work was supported in part by the National Natural Science Foundation of China (62003298, 62163036), the Major Project of Science and Technology of Yunnan Province (202202AD080005, 202202AH080009), and the Yunnan University Professional Degree Graduate Practice Innovation Fund Project (ZC-22222770)
More Information
  • Oscillation detection has been a hot research topic in industries due to the high incidence of oscillation loops and their negative impact on plant profitability. Although numerous automatic detection techniques have been proposed, most of them can only address part of the practical difficulties. An oscillation is heuristically defined as a visually apparent periodic variation. However, manual visual inspection is labor-intensive and prone to missed detection. Convolutional neural networks (CNNs), inspired by animal visual systems, have been raised with powerful feature extraction capabilities. In this work, an exploration of the typical CNN models for visual oscillation detection is performed. Specifically, we tested MobileNet-V1, ShuffleNet-V2, EfficientNet-B0, and GhostNet models, and found that such a visual framework is well-suited for oscillation detection. The feasibility and validity of this framework are verified utilizing extensive numerical and industrial cases. Compared with state-of-the-art oscillation detectors, the suggested framework is more straightforward and more robust to noise and mean-nonstationarity. In addition, this framework generalizes well and is capable of handling features that are not present in the training data, such as multiple oscillations and outliers.


  • loading
  • 1 Supplementary matenial of this paper can be found in links https://github.com/2681704096/Supplementary-materials-for-the-paper.git.
  • [1]
    W. Bounoua, M. Aftab, and C. Omlin, “Controller performance monitoring: A survey of problems and a review of approaches from a data-driven perspective with a focus on oscillations detection and diagnosis,” Ind. Eng. Chem. Res., vol. 61, no. 49, pp. 17735–17765, Dec. 2022. doi: 10.1021/acs.iecr.2c02785
    X. Lang, Q. Chen, S. Lu, A. Horch, and Y. Zhang, “On demodulation of time-varying oscillations in process plant,” J. Process Control, vol. 120, pp. 28–43, Dec. 2022. doi: 10.1016/j.jprocont.2022.10.004
    X. Lang, Y. Zhang, L. Xie, P. Li, A. Horch, and H. Su, “Detrending and denoising of industrial oscillation data,” IEEE Trans. Ind. Inform., vol. 19, no. 4, pp. 5809–5820, Apr. 2023. doi: 10.1109/TII.2022.3188844
    Q. Chen, J. Chen, X. Lang, L. Xie, S. Lu, and H. Su, “Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition,” Control Eng. Practice, vol. 97, p. 104307, Apr. 2020. doi: 10.1016/j.conengprac.2020.104307
    J. Qian, L. Jiang, and Z. Song, “Locally linear back-propagation based contribution for nonlinear process fault diagnosis,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 764–775, May 2020. doi: 10.1109/JAS.2020.1003147
    X. Lang, Q. Zheng, L. Xie, A. Horch, and H. Su, “Direct multivariate intrinsic time-scale decomposition for oscillation monitoring,” IEEE Trans. Control Syst. Technol., vol. 28, no. 6, pp. 2608–2615, Nov. 2020. doi: 10.1109/TCST.2019.2940374
    J. Dambros, J. Trierweiler, and M. Farenzena, “Oscillation detection in process industries – Part I: Review of the detection methods,” J. Process Control, vol. 78, pp. 108–123, Jun. 2019. doi: 10.1016/j.jprocont.2019.04.002
    D. Zheng, L. Zhou, and Z. Song, “Kernel generalization of multi-rate probabilistic principal component analysis for fault detection in nonlinear process,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1465–1476, Aug. 2021. doi: 10.1109/JAS.2021.1004090
    T. Hägglund, “A control-loop performance monitor,” Control Eng. Practice, vol. 3, no. 11, pp. 1543–1551, Nov. 1995. doi: 10.1016/0967-0661(95)00164-P
    N. Thornhill and T. Hägglund, “Detection and diagnosis of oscillation in control loops,” Control Eng. Practice, vol. 5, no. 10, pp. 1343–1354, Oct. 1997. doi: 10.1016/S0967-0661(97)00131-7
    Z. Yan, J. Chen, and Z. Zhang, “Using hidden Markov model to identify oscillation temporal pattern for control loops,” Chem. Eng. Res. Des., vol. 119, pp. 117–129, Mar. 2017. doi: 10.1016/j.cherd.2017.01.011
    K. Zhang, B. Huang, and G. Ji, “Multiple oscillations detection in control loops by using the DFT and raleigh distribution,” IFAC-PapersOnLine, vol. 48, no. 21, pp. 529–534, Oct. 2015. doi: 10.1016/j.ifacol.2015.09.580
    M. F. Ullah, L. Das, S. Parmar, R. Rengaswamy, and B. Srinivasan, “On developing a framework for detection of oscillations in data,” ISA Trans., vol. 89, pp. 96–112, Jun. 2019. doi: 10.1016/j.isatra.2018.12.026
    T. Miao and D. Seborg, “Automatic detection of excessively oscillatory feedback control loops,” in Proc. IEEE Int. Conf. Control Appl., Aug. 1999, vol. 1, pp. 359–364.
    N. F. Thornhill, B. Huang, and H. Zhang, “Detection of multiple oscillations in control loops,” J. Process Control, vol. 13, no. 1, pp. 91–100, Feb. 2003. doi: 10.1016/S0959-1524(02)00007-0
    E. Naghoosi and B. Huang, “Automatic detection and frequency estimation of oscillatory variables in the presence of multiple oscillations,” Ind. Eng. Chem. Res., vol. 53, no. 22, pp. 9427–9438, Jun. 2014. doi: 10.1021/ie4037998
    E. Naghoosi and B. Huang, “Wavelet transform based methodology for detection and characterization of multiple oscillations in nonstationary variables,” Ind. Eng. Chem. Res., vol. 56, no. 8, pp. 2083–2093, Mar. 2017. doi: 10.1021/acs.iecr.6b03075
    W. Bounoua, M. Aftab, and C. Omlin, “Online detrended fluctuation analysis and improved empirical wavelet transform for real-time oscillations detection in industrial control loops,” Comput. Chem. Eng., vol. 172, p. 108173, Apr. 2023. doi: 10.1016/j.compchemeng.2023.108173
    B. Srinivasan and R. Rengaswamy, “Automatic oscillation detection and characterization in closed-loop systems,” Control Eng. Practice, vol. 20, no. 8, pp. 733–746, Aug. 2012. doi: 10.1016/j.conengprac.2012.02.008
    L. Xie, X. Lang, A. Horch, and Y. Yang, “Online oscillation detection in the presence of signal intermittency,” Control Eng. Practice, vol. 55, pp. 91–100, Oct. 2016. doi: 10.1016/j.conengprac.2016.06.020
    Q. Chen, X. Lang, L. Xie, and H. Su, “Detecting nonlinear oscillations in process control loop based on an improved VMD,” IEEE Access, vol. 7, pp. 91446–91462, Jul. 2019. doi: 10.1109/ACCESS.2019.2925861
    L. Xie, X. Lang, J. Chen, A. Horch, and H. Su, “Time-varying oscillation detector based on improved LMD and robust lempel–Ziv complexity,” Control Eng. Practice, vol. 51, pp. 48–57, Jun. 2016. doi: 10.1016/j.conengprac.2016.03.012
    X. Lang, N. Rehman, Y. Zhang, L. Xie, and H. Su, “Median ensemble empirical mode decomposition,” Signal Process., vol. 176, p. 107686, Nov. 2020. doi: 10.1016/j.sigpro.2020.107686
    S. Sharma, V. Kumar, and K. Rana, “Automatic oscillations detection and quantification in process control loops using linear predictive coding,” Eng. Sci. Technol. ,Int. J., vol. 23, no. 1, pp. 123–143, Feb. 2020.
    J. Wang and C. Zhao, “Variants of slow feature analysis framework for automatic detection and isolation of multiple oscillations in coupled control loops,” Comput. Chem. Eng., vol. 141, p. 107029, Oct. 2020. doi: 10.1016/j.compchemeng.2020.107029
    S. Sharma, V. Kumar, and K. Rana, “Control loop oscillation detection and quantification using PRONY method of IIR filter design and deep neural network,” J. Intell. Fuzzy Syst., vol. 42, no. 2, pp. 1141–1154, Jan. 2022. doi: 10.3233/JIFS-189778
    Y. Arbabi Yazdi, H. Toossian Shandiz, and H. Gholizade Narm, “Automatic oscillations detection and classification of control loop using generalized machine learning algorithms,” Trans. Inst. Meas. Control, vol. 45, no. 3, pp. 476–491, Feb. 2023. doi: 10.1177/01423312221118129
    J. Dambros, J. Trierweiler, M. Farenzena, and M. Kloft, “Oscillation detection in process industries by a machine learning-based approach,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14180–14192, Aug. 2019. doi: 10.1021/acs.iecr.9b01456
    A. Horch, “Benchmarkinsg control loops with oscillations and stiction,” in Process Control Performance Assessment, A. W. Ordys, D. Uduehi, M. A. Johnson, Eds. , 1st ed. London, UK: Springer, 2006, pp. 227–257.
    M. Jelali, Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance, London, UK: Springer, 2013.
    R. Jiao, K. Peng, and J. Dong, “Remaining useful life prediction for a roller in a hot strip mill based on deep recurrent neural networks,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 7, pp. 1345–1354, Jul. 2021. doi: 10.1109/JAS.2021.1004051
    S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, p. 107398, Apr. 2021. doi: 10.1016/j.ymssp.2020.107398
    Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: Analysis pplications, and prospects,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12, pp. 6999–7019, Dec. 2022. doi: 10.1109/TNNLS.2021.3084827
    A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” [Online]. Available: https://arxiv.org/abs/1704.04861. Apr. 2017.
    N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet v2: Practical guidelines for efficient CNN architecture design,” in Proc. Eur. Conf. Comput. Vis., Sept. 2018, pp. 116–131.
    M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in Proc. Int. Conf. Mach. Learn., May 2019, pp. 6105–6114.
    K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “GhostNet: More features from cheap operations,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 1580–1589.
    S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,” Comput. Sci. Rev., vol. 40, p. 100379, May 2021. doi: 10.1016/j.cosrev.2021.100379
    D. Xiong, D. Zhang, X. Zhao, and Y. Zhao, “Deep learning for emg-based human-machine interaction: A review,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 3, pp. 512–533, Mar. 2021. doi: 10.1109/JAS.2021.1003865
    J. Gu, Z. Wang, J. Kuen, et al., “Recent advances in convolutional neural networks,” Pattern Recognit., vol. 77, pp. 354–377, May 2018. doi: 10.1016/j.patcog.2017.10.013
    N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999. doi: 10.1016/S0893-6080(98)00116-6
    J. Dambros, J. Trierweiler, and M. Farenzena, “Industrial datasets and a tool for SISO control loops data visualization and analysis,” Comput. Chem. Eng., vol. 146, p. 107198, Mar. 2021. doi: 10.1016/j.compchemeng.2020.107198
    M. Jelali and B. Huang, Detection and Diagnosis of Stiction in Control Loops: State of the Art and Advanced Methods. London, U.K: Springer, 2010.
    J. Dambros, J. Trierweiler, M. Farenzena, A. Kempf, L. Longhi, and H. Teixeira, “Oscillation detection in process industries – Part II: Industrial application,” J. Process Control, vol. 78, pp. 139–154, Jun. 2019. doi: 10.1016/j.jprocont.2019.04.007
    E. F. Ohata, G. M. Bezerra, J. V. S. das Chagas, et al., “Automatic detection of COVID-19 infection using chest X-ray images through transfer learning,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 239–248, Jan. 2021. doi: 10.1109/JAS.2020.1003393
    E. Becht, L. McInnes, J. Healy, et al., “Dimensionality reduction for visualizing single-cell data using UMAP,” Nat. Biotechnol., vol. 37, no. 1, pp. 38–44, Jan. 2019. doi: 10.1038/nbt.4314
  • JAS-2023-0739-supp.pdf


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article views (120) PDF downloads(29) Cited by()


    • A visual framework for oscillation detection in control loops using typical CNNs is explored
    • The framework demonstrates strong robustness to noise and mean non-stationarity
    • The detection speed of the framework is not limited by the length of the oscillation data
    • The framework can be updated to process new oscillation problems with additional training data


    DownLoad:  Full-Size Img  PowerPoint