A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 3
Mar.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. Zhang, J. Hu, J. Cheng, Z.-G. Wu, and  H. Yan,  “A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 661–672, Mar. 2024. doi: 10.1109/JAS.2023.123948
Citation: D. Zhang, J. Hu, J. Cheng, Z.-G. Wu, and  H. Yan,  “A novel disturbance observer based fixed-time sliding mode control for robotic manipulators with global fast convergence,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 3, pp. 661–672, Mar. 2024. doi: 10.1109/JAS.2023.123948

A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence

doi: 10.1109/JAS.2023.123948
Funds:  This work was partially supported by the National Natural Science Foundation of China (62322315, 61873237), Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (LR22F030003), the National Key Rearch and Development Funding (2018YFB1403702), the Key Rearch and Development Programs of Zhejiang Province (2023C01224), and Major Project of Science and Technology Innovation in Ningbo City (2019B1003)
More Information
  • This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators. First, a fixed-time disturbance observer (FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems. Then an adaptive scheme is used and the adaptive FTDO (AFTDO) is developed, so that the priori knowledge of the lumped disturbance is not required. Further, a new non-singular fast terminal sliding mode (NFTSM) surface is designed by using an arctan function, which helps to overcome the singularity problem and enhance the robustness of the system. Based on the estimation of the lumped disturbance by the AFTDO, a fixed-time non-singular fast terminal sliding mode controller (FTNFTSMC) is developed to guarantee the trajectory tracking errors converge to zero within a fixed time. The settling time is independent of the initial state of the system. In addition, the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method. Finally, the fixed-time NFESM (FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers (SMCs) are performed. The comparative results confirm that the FTNFTSMC has superior control performance.

     

  • loading
  • [1]
    J. P. C. de Souza, C. M. Costa, L. F. Rocha, R. Arrais, A. P. Moreira, E. J. S. Pires, and J. Boaventura-Cunha, “Reconfigurable grasp planning pipeline with grasp synthesis and selection applied to picking operations in aerospace factories,” Rob. Comput.-Integr. Manuf., vol. 67, p. 102032, Feb. 2021. doi: 10.1016/j.rcim.2020.102032
    [2]
    H. Luo, T. Wu, J. Fu, and F. Zhao, “Analysis of typical working conditions and experimental research of friction stir welding robot for aerospace applications,” Proc. Inst. Mech. Eng.,Part C: J. Mech. Eng. Sci., vol. 235, no. 6, pp. 1045–1056, Mar. 2021. doi: 10.1177/0954406220941558
    [3]
    O. M. Omisore, S. Han, J. Xiong, H. Li, Z. Li, and L. Wang, “A review on flexible robotic systems for minimally invasive surgery,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 52, no. 1, pp. 631–644, Jan. 2022. doi: 10.1109/TSMC.2020.3026174
    [4]
    L. Wei, S. Jiang, Z. Yang, G. Zhang, and L. Ma, “A CT-guided robotic needle puncture method for lung tumours with respiratory motion,” Phys. Med., vol. 73, pp. 48–56, May 2020. doi: 10.1016/j.ejmp.2020.04.003
    [5]
    P. Štibinger, G. Broughton, F. Majer, Z. Rozsypálek, A. Wang, K. Jindal, A. Zhou, D. Thakur, G. Loianno, T. Krajník, and M. Saska, “Mobile manipulator for autonomous localization, grasping and precise placement of construction material in a semi-structured environment,” IEEE Rob. Autom. Lett., vol. 6, no. 2, pp. 2595–2602, Apr. 2021. doi: 10.1109/LRA.2021.3061377
    [6]
    Y. Feng, X. Yu, and Z. Man, “Non-singular terminal sliding mode control of rigid manipulators,” Automatica, vol. 38, no. 12, pp. 2159–2167, Dec. 2002. doi: 10.1016/S0005-1098(02)00147-4
    [7]
    Y. Li, L. Liu, and G. Feng, “Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems,” Automatica, vol. 89, pp. 325–332, Mar. 2018. doi: 10.1016/j.automatica.2017.12.020
    [8]
    M. Bagheri, I. Karafyllis, P. Naseradinmousavi, and M. Krstic, “Adaptive control of a two-link robot using batch least-square identifier,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 86–93, Jan. 2021. doi: 10.1109/JAS.2020.1003459
    [9]
    S. Khorashadizadeh and M. Sadeghijaleh, “Adaptive fuzzy tracking control of robot manipulators actuated by permanent magnet synchronous motors,” Comput. Electr. Eng., vol. 72, pp. 100–111, Nov. 2018. doi: 10.1016/j.compeleceng.2018.09.010
    [10]
    E. Kelekci and S. Kizir, “Trajectory and vibration control of a flexible joint manipulator using interval type-2 fuzzy logic,” ISA Trans., vol. 94, pp. 218–233, Nov. 2019. doi: 10.1016/j.isatra.2019.04.001
    [11]
    W. Chang, Y. Li, and S. Tong, “Adaptive fuzzy backstepping tracking control for flexible robotic manipulator,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 12, pp. 1923–1930, Dec. 2021. doi: 10.1109/JAS.2017.7510886
    [12]
    L. Zhang, J. Liu, and N. Cui, “Backstepping control for a two-link manipulator with appointed-time convergence,” ISA Trans., vol. 128, pp. 208–219, Sept. 2022. doi: 10.1016/j.isatra.2021.10.005
    [13]
    F. Zhang, “High-speed nonsingular terminal switched sliding mode control of robot manipulators,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 775–781, Oct. 2017. doi: 10.1109/JAS.2016.7510157
    [14]
    Z. Zuo, “Non-singular fixed-time terminal sliding mode control of non-linear systems,” IET Control Theory Appl., vol. 9, no. 4, pp. 545–552, Feb. 2015. doi: 10.1049/iet-cta.2014.0202
    [15]
    C. Mu and H. He, “Dynamic behavior of terminal sliding mode control,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3480–3490, Apr. 2018. doi: 10.1109/TIE.2017.2764842
    [16]
    J. Zhai and G. Xu, “A novel non-singular terminal sliding mode trajectory tracking control for robotic manipulators,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 68, no. 1, pp. 391–395, Jan. 2021. doi: 10.1109/TCSII.2020.2999937
    [17]
    Z. Li, J. Zhai, and H. R. Karimi, “Adaptive finite-time super-twisting sliding mode control for robotic manipulators with control backlash,” Int. J. Robust Nonlinear Control, vol. 31, no. 17, pp. 8537–8550, Nov. 2021. doi: 10.1002/rnc.5744
    [18]
    M. Van, X. P. Do, and M. Mavrovouniotis, “Self-tuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” ISA Trans., vol. 96, pp. 60–68, Jan. 2020. doi: 10.1016/j.isatra.2019.06.017
    [19]
    S. Yi and J. Zhai, “Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators,” ISA Trans., vol. 90, pp. 41–51, Jul. 2019. doi: 10.1016/j.isatra.2018.12.046
    [20]
    M. Boukattaya, N. Mezghani, and T. Damak, “Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems,” ISA Trans., vol. 77, pp. 1–19, Jun. 2018. doi: 10.1016/j.isatra.2018.04.007
    [21]
    A. Polyakov, “Nonlinear feedback design for fixed-time stabilization of linear control systems,” IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106–2110, Aug. 2011.
    [22]
    Q. D. Nguyen, H. P. Nguyen, N. K. Trung, S. Ueno, S. C. Huang, and V. N. Giap, “Fixed-time disturbance observer based on fractional-order state observer and super-twisting sliding mode control for a class of second-order of slotless self-bearing motor,” Int. J. Dyn. Control, vol. 11, no. 3, pp. 1203–1219, Dec. 2023. doi: 10.1007/s40435-022-01022-3
    [23]
    Y. Pan, P. Du, H. Xue, and H.-K. Lam, “Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8, pp. 2388–2398, Aug. 2021. doi: 10.1109/TFUZZ.2020.2999746
    [24]
    Y. Liu, H. Zhang, Y. Wang, and S. Yu, “Fixed-time cooperative control for robotic manipulators with motion constraints using unified transformation function,” Int. J. Robust Nonlinear Control, vol. 31, no. 14, pp. 6826–6844, Sept. 2021. doi: 10.1002/rnc.5658
    [25]
    W. He, F. Kang, L. Kong, Y. Feng, G. Cheng, and C. Sun, “Vibration control of a constrained two-link flexible robotic manipulator with fixed-time convergence,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 5973–5983, Jul. 2022. doi: 10.1109/TCYB.2021.3064865
    [26]
    Y. Su, C. Zheng, and P. Mercorelli, “Robust approximate fixed-time tracking control for uncertain robot manipulators,” Mech. Syst. Signal Process., vol. 135, p. 106379, Jan. 2020. doi: 10.1016/j.ymssp.2019.106379
    [27]
    E. Moulay, V. Léchappé, E. Bernuau, M. Defoort, and F. Plestan, “Fixed-time sliding mode control with mismatched disturbances,” Automatica, vol. 136, p. 110009, Feb. 2022. doi: 10.1016/j.automatica.2021.110009
    [28]
    H. Sai, Z. Xu, S. He, E. Zhang, and L. Zhu, “Adaptive nonsingular fixed-time sliding mode control for uncertain robotic manipulators under actuator saturation,” ISA Trans., vol. 123, pp. 46–60, Apr. 2022. doi: 10.1016/j.isatra.2021.05.011
    [29]
    S. Shi, J. Gu, S. Xu, and H. Min, “Globally fixed-time high-order sliding mode control for new sliding mode systems subject to mismatched terms and its application,” IEEE Trans. Ind. Electron., vol. 67, no. 12, pp. 10776–10786, Dec. 2020. doi: 10.1109/TIE.2019.2959482
    [30]
    G. Lin, H. Li, C. K. Ahn, and D. Yao, “Event-based finite-time neural control for human-in-the-loop UAV attitude systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 12, pp. 10387–10397, Dec. 2023. doi: 10.1109/TNNLS.2022.3166531
    [31]
    M. Chen, “Robust tracking control for self-balancing mobile robots using disturbance observer,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 458–465, Jul. 2017. doi: 10.1109/JAS.2017.7510544
    [32]
    M. Van and S. S. Ge, “Adaptive fuzzy integral sliding-mode control for robust fault-tolerant control of robot manipulators with disturbance observer,” IEEE Trans. Fuzzy Syst., vol. 29, no. 5, pp. 1284–1296, May 2021. doi: 10.1109/TFUZZ.2020.2973955
    [33]
    H. Ma, H. Ren, Q. Zhou, H. Li, and Z. Wang, “Observer-based neural control of N-link flexible-joint robots,” IEEE Trans. Neural Netw. Learn. Syst., 2022. DOI: 10.1109/TNNLS.2022.3203074
    [34]
    J. Gao, Z. Fu, and S. Zhang, “Adaptive fixed-time attitude tracking control for rigid spacecraft with actuator faults,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 7141–7149, Sept. 2019. doi: 10.1109/TIE.2018.2878117
    [35]
    Q. Yao, “Disturbance observer-based robust fixed-time integrated trajectory tracking control for space manipulator,” Robotica, vol. 40, no. 9, pp. 3214–3232, Sept. 2022. doi: 10.1017/S0263574722000157
    [36]
    D. Shi, J. Zhang, Z. Sun, G. Shen, and Y. Xia, “Composite trajectory tracking control for robot manipulator with active disturbance rejection,” Control Eng. Pract., vol. 106, p. 104670, Jan. 2021. doi: 10.1016/j.conengprac.2020.104670
    [37]
    H. Li and Y. Cai, “Fixed-time non-singular terminal sliding mode control with globally fast convergence,” IET Control Theory Appl., vol. 16, no. 12, pp. 1227–1241, Aug. 2022. doi: 10.1049/cth2.12299
    [38]
    B. Jiang, Q. Hu, and M. I. Friswell, “Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 4, pp. 1576–1586, Aug. 2016. doi: 10.1109/TAES.2016.140406
    [39]
    Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,” Automatica, vol. 54, pp. 305–309, Apr. 2015. doi: 10.1016/j.automatica.2015.01.021
    [40]
    M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. Hoboken, USA: John Wiley & Sons, 2006.
    [41]
    M. Tarokh, “Decoupled nonlinear three-term controllers for robot trajectory tracking,” IEEE Trans. Rob. Autom., vol. 15, no. 2, pp. 369–380, Apr. 1999. doi: 10.1109/70.760360
    [42]
    C. Edwards and Y. B. Shtessel, “Adaptive continuous higher order sliding mode control,” Automatica, vol. 65, pp. 183–190, Mar. 2016. doi: 10.1016/j.automatica.2015.11.038
    [43]
    V. I. Utkin, Sliding Modes in Control and Optimization. Springer Science & Business Media, 2013.
    [44]
    A. Jouila and K. Nouri, “An adaptive robust nonsingular fast terminal sliding mode controller based on wavelet neural network for a 2-DOF robotic arm,” J. Franklin Inst., vol. 357, no. 18, pp. 13259–13282, Dec. 2020. doi: 10.1016/j.jfranklin.2020.04.038

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article Metrics

    Article views (717) PDF downloads(153) Cited by()

    Highlights

    • A new fixed-time non-singular fast terminal sliding mode control strategy for robotic manipulators is proposed
    •  
    • A new non-singular fast terminal sliding mode surface based on the arctan function is designed to overcome the singularity problem more simply and effectively
    •  
    • A new adaptive fixed-time disturbance observer is designed to guarantee faster estimation speed and higher estimation accuracy
    •  

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return