IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Tian, M. Liu, S. Zhang, R. Zheng, and S. Dong, “A feature-aided multiple model algorithm for maneuvering target tracking,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 566–568, Feb. 2024. doi: 10.1109/JAS.2023.123939 |
[1] |
C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,” IEEE Trans. Information Theory, vol. 62, no. 9, pp. 5117–5144, 2016. doi: 10.1109/TIT.2016.2556683
|
[2] |
J. Wang, W.-X. Sheng, Y.-B. Han, and X.-F. Ma, “Adaptive beamforming with compressed sensing for sparse receiving array,” IEEE Trans. Aerospace and Electronic Systems, vol. 50, no. 2, pp. 823–833, 2014. doi: 10.1109/TAES.2014.120532
|
[3] |
H. N. P. Wisudawan, D. D. Ariananda, and R. Hidayat, “3-D MUSIC spectrum reconstruction for joint azimuth-elevation-frequency band estimation,” in Proc. 54th Asilomar Conf. Signals, Systems, and Computers, 2020, pp. 1250–1254.
|
[4] |
S. Li, R. He, B. Lin, and F. Sun, “DOA estimation based on sparse representation of the fractional lower order statistics in impulsive noise,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 4, pp. 860–868, 2016.
|
[5] |
J. W. Paik and J.-H. Lee, “Noniterative three-dimensional location estimation using azimuth and elevation measurements at multiple locations,” J. Sensors, vol. 2019, pp. 1–13, 2019.
|
[6] |
J. Tugnait, “Adaptive estimation and identification for discrete systems with Markov jump parameters,” IEEE Trans. Autom. control, vol. 27, no. 5, pp. 1054–1065, 1982. doi: 10.1109/TAC.1982.1103061
|
[7] |
E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: A survey,” IEEE Trans. Aerospace And Electronic Systems, vol. 34, no. 1, pp. 103–123, 1998. doi: 10.1109/7.640267
|
[8] |
J. Teng, H. Snoussi, and C. Richard, “Collaborative multi-target tracking in wireless sensor networks,” Int. J. Systems Science, vol. 42, no. 9, pp. 1427–1443, 2011. doi: 10.1080/00207721.2011.581398
|
[9] |
H. A. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for systems with Markovian switching coefficients,” IEEE Trans. Autom. Control, vol. 33, no. 8, pp. 780–783, 1988. doi: 10.1109/9.1299
|
[10] |
X. Bi, J. Du, J. Gao, W. Wang, and Y. Gao, “The IMM tracking algorithm for maneuvering target with adaptive Markov transition probability matrix,” in Proc. IEEE 10th Conf. Industrial Electronics and Applications, 2015, pp. 1279–1282.
|
[11] |
G. Xie, L. Sun, T. Wen, X. Hei, and F. Qian, “Adaptive transition probability matrix-based parallel IMM algorithm,” IEEE Trans. Systems,Man,and Cyber.: Systems, vol. 51, no. 5, pp. 2980–2989, 2019.
|
[12] |
W. Kuperman and P. Roux, Underwater Acoustics. New York, USA: Springer, 2007.
|
[13] |
Y. Y. Al-Aboosi, M. S. Ahmed, N. S. M. Shah, and N. H. H. Khamis, “Study of absorption loss effects on acoustic wave propagation in shallow water using different empirical models,” J. Engineering and Applied Sciences, vol. 12, no. 22, p. 6474, 2017.
|
[14] |
W. Sun and Y. Yang, “Adaptive maneuvering frequency method of current statistical model,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 154–160, 2016.
|
[15] |
P. H. Foo and G. W. Ng, “Combining IMM method with particle filters for 3D maneuvering target tracking,” in Proc. 10th Int. Conf. Information Fusion, 2007, pp. 1–8.
|
[16] |
J.-P. Guo, J. Xu, L. Yan, X.-G. Xia, X. Xiao, T. Long, and M.-M. Bian, “An improved imm algorithm based on maneuvering-adaptive model set,” in Proc. CIE Int. Conf. Radar, 2016, pp. 1–5.
|
[17] |
X. Wu, W.-P. Zhu, and J. Yan, “A high-resolution DOA estimation method with a family of nonconvex penalties,” IEEE Trans. Vehicular Technology, vol. 67, no. 6, pp. 4925–4938, 2018. doi: 10.1109/TVT.2018.2817638
|
[18] |
T. Xu and L. Xu, “Underwater acoustic communication channels,” in Digital Underwater Acoustic Communications. Orlando, USA: Academic Press, 2017, ch. 2, pp. 31–143.
|
JAS-2023-0774-supp.pdf |