IEEE/CAA Journal of Automatica Sinica
Citation: | Y. Lu, J. Ma, X. Mei, J. Huang, and X.-P. Zhang, “Feature matching via topology-aware graph interaction model,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 113–130, Jan. 2024. doi: 10.1109/JAS.2023.123774 |
[1] |
J. Ma, X. Jiang, A. Fan, J. Jiang, and J. Yan, “Image matching from handcrafted to deep features: A survey,” Int. J. Comput. Vision, vol. 129, no. 1, pp. 23–79, Jan. 2021. doi: 10.1007/s11263-020-01359-2
|
[2] |
C. Leng, H. Zhang, G. Cai, Z. Chen, and A. Basu, “Total variation constrained non-negative matrix factorization for medical image registration,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 5, pp. 1025–1037, May 2021. doi: 10.1109/JAS.2021.1003979
|
[3] |
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004. doi: 10.1023/B:VISI.0000029664.99615.94
|
[4] |
D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-supervised interest point detection and description,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018, pp. 337-33712.
|
[5] |
M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981. doi: 10.1145/358669.358692
|
[6] |
K. M. Yi, E. Trulls, Y. Ono, V. Lepetit, M. Salzmann, and P. Fua, “Learning to find good correspondences,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 2666–2674.
|
[7] |
J. Yang, Z. Huang, S. Quan, Z. Cao, and Y. Zhang, “RANSACs for 3D rigid registration: A comparative evaluation,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 10, pp. 1861–1878, Oct. 2022. doi: 10.1109/JAS.2022.105500
|
[8] |
J. Ma, J. Zhao, J. Jiang, H. Zhou, and X. Guo, “Locality preserving matching,” Int. J. Comput. Vision, vol. 127, no. 5, pp. 512–531, May 2019. doi: 10.1007/s11263-018-1117-z
|
[9] |
X. Jiang, J. Jiang, A. Fan, Z. Wang, and J. Ma, “Multiscale locality and rank preservation for robust feature matching of remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6462–6472, Sept. 2019. doi: 10.1109/TGRS.2019.2906183
|
[10] |
X. Jiang, Y. Xia, X.-P. Zhang, and J. Ma, “Robust image matching via local graph structure consensus,” Pattern Recognit., vol. 126, p. 108588, Jun. 2022. doi: 10.1016/j.patcog.2022.108588
|
[11] |
J. Ma, K. Zhang, and J. Jiang, “Loop closure detection via locality preserving matching with global consensus,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 411–426, Feb. 2023. doi: 10.1109/JAS.2022.105926
|
[12] |
P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with application to estimating image geometry,” Comput. Vision Image Understanding, vol. 78, no. 1, pp. 138–156, Apr. 2000. doi: 10.1006/cviu.1999.0832
|
[13] |
O. Chum and J. Matas, “Matching with PROSAC-progressive sample consensus,” in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, 2005, pp. 220–226.
|
[14] |
O. Chum, J. Matas, and J. Kittler, “Locally optimized RANSAC,” in Proc. 25th Joint Pattern Recognition Symp., Magdeburg, Germany, 2003, pp. 236–243.
|
[15] |
O. Chum, T. Werner, and J. Matas, “Two-view geometry estimation unaffected by a dominant plane,” in Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, 2005, pp. 772–779.
|
[16] |
R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J.-M. Frahm, “USAC: A universal framework for random sample consensus,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 35, no. 8, pp. 2022–2038, Aug. 2013. doi: 10.1109/TPAMI.2012.257
|
[17] |
D. Barath and J. Matas, “Graph-cut RANSAC,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 6733–6741.
|
[18] |
D. Barath, J. Matas, and J. Noskova, “MAGSAC: Marginalizing sample consensus,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 10189–10197.
|
[19] |
D. Baráth, J. Noskova, M. Ivashechkin, and J. Matas, “MAGSAC++, a fast, reliable and accurate robust estimator,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 1301–1309.
|
[20] |
X. Li and Z. Hu, “Rejecting mismatches by correspondence function,” Int. J. Comput. Vision, vol. 89, no. 1, pp. 1–17, Aug. 2010. doi: 10.1007/s11263-010-0318-x
|
[21] |
J. Ma, J. Zhao, J. Tian, A. L. Yuille, and Z. Tu, “Robust point matching via vector field consensus,” IEEE Trans. Image Process., vol. 23, no. 4, pp. 1706–1721, Apr. 2014. doi: 10.1109/TIP.2014.2307478
|
[22] |
W.-Y. Lin, F. Wang, M.-M. Cheng, S.-K. Yeung, P. H. S. Torr, M. N. Do, and J. Lu, “CODE: Coherence based decision boundaries for feature correspondence,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 40, no. 1, pp. 34–47, Jan. 2018. doi: 10.1109/TPAMI.2017.2652468
|
[23] |
J. Ma, J. Zhao, J. Tian, X. Bai, and Z. Tu, “Regularized vector field learning with sparse approximation for mismatch removal,” Pattern Recognit., vol. 46, no. 12, pp. 3519–3532, Dec. 2013. doi: 10.1016/j.patcog.2013.05.017
|
[24] |
A. Fan, X. Jiang, Y. Ma, X. Mei, and J. Ma, “Smoothness-driven consensus based on compact representation for robust feature matching,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 8, pp. 4460–4472, Aug. 2023. doi: 10.1109/TNNLS.2021.3118409
|
[25] |
Y. Lu, J. Ma, L. Fang, X. Tian, and J. Jiang, “Robust and scalable Gaussian process regression and its applications,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Vancouver, Canada, 2023, pp. 21950–21959.
|
[26] |
E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and T. Querido, “A survey for the quadratic assignment problem,” Eur. J. Oper. Res., vol. 176, no. 2, pp. 657–690, Jan. 2007. doi: 10.1016/j.ejor.2005.09.032
|
[27] |
B. Jiang, J. Tang, C. Ding, and B. Luo, “Binary constraint preserving graph matching,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 550–557.
|
[28] |
S. Lee, J. Lim, and I. H. Suh, “Progressive feature matching: Incremental graph construction and optimization,” IEEE Trans. Image Process., vol. 29, pp. 6992–7005, May 2022.
|
[29] |
J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, and M.-M. Cheng, “GMS: Grid-based motion statistics for fast, ultra-robust feature correspondence,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 2828–2837.
|
[30] |
L. Cavalli, V. Larsson, M. R. Oswald, T. Sattler, and M. Pollefeys, “Handcrafted outlier detection revisited,” in Proc. 16th European Conf. Computer Vision, Glasgow, UK, 2020, pp. 770–787.
|
[31] |
R. Q. Charles, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 77–85.
|
[32] |
J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, H. Liao, and L. Quan, “Learning two-view correspondences and geometry using order-aware network,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea, 2019, pp. 5844–5853.
|
[33] |
C. Zhao, Y. Ge, F. Zhu, R. Zhao, H. Li, and M. Salzmann, “Progressive correspondence pruning by consensus learning,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Montreal, Canada, 2021, pp. 6444–6453.
|
[34] |
W. Sun, W. Jiang, E. Trulls, A. Tagliasacchi, and K. M. Yi, “ACNe: Attentive context normalization for robust permutation-equivariant learning,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 11283–11292.
|
[35] |
C. Zhao, Z. Cao, C. Li, X. Li, and J. Yang, “NM-net: Mining reliable neighbors for robust feature correspondences,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Long Beach, USA, 2019, pp. 215–224.
|
[36] |
P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue: Learning feature matching with graph neural networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, USA, 2020, pp. 4937–4946.
|
[37] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 6000–6010.
|
[38] |
C. Wang, N. Komodakis, and N. Paragios, “Markov random field modeling, inference and learning in computer vision and image understanding: A survey,” Comput. Vision Image Understanding, vol. 117, no. 11, pp. 1610–1627, Nov. 2013. doi: 10.1016/j.cviu.2013.07.004
|
[39] |
A. Shekhovtsov, I. Kovtun, and V. Hlaváç, “Efficient MRF deformation model for non-rigid image matching,” Comput. Vision Image Understanding, vol. 112, no. 1, pp. 91–99, Oct. 2008. doi: 10.1016/j.cviu.2008.06.006
|
[40] |
V. Kolmogorov and R. Zabin, “What energy functions can be minimized via graph cuts?” IEEE Trans. Pattern Analy. Mach. Intell., vol. 26, no. 2, pp. 147–159, Feb. 2004. doi: 10.1109/TPAMI.2004.1262177
|
[41] |
L. Torresani, V. Kolmogorov, and C. Rother, “Feature correspondence via graph matching: Models and global optimization,” in Proc. 10th European Conf. Computer Vision, Marseille, France, 2008, pp. 596–609.
|
[42] |
Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 23, no. 11, pp. 1222–1239, Nov. 2001. doi: 10.1109/34.969114
|
[43] |
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine region detectors,” Int. J. Comput. Vision, vol. 65, no. 1, pp. 43–72, Oct. 2005.
|
[44] |
J.-M. Morel and G. Yu, “ASIFT: A new framework for fully affine invariant image comparison,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 438–469, Apr. 2009. doi: 10.1137/080732730
|
[45] |
J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sept. 1975. doi: 10.1145/361002.361007
|
[46] |
Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision,” IEEE Trans. Pattern Analy. Mach. Intell., vol. 26, no. 9, pp. 1124–1137, Sept. 2004. doi: 10.1109/TPAMI.2004.60
|
[47] |
J. Ma, J. Jiang, H. Zhou, J. Zhao, and X. Guo, “Guided locality preserving feature matching for remote sensing image registration,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8, pp. 4435–4447, Aug. 2018. doi: 10.1109/TGRS.2018.2820040
|
[48] |
H. Aanæs, R. R. Jensen, G. Vogiatzis, E. Tola, and A. B. Dahl, “Large-scale data for multiple-view stereopsis,” Int. J. Comput. Vision, vol. 120, no. 2, pp. 153–168, Apr. 2016. doi: 10.1007/s11263-016-0902-9
|
[49] |
H. S. Wong, T.-J. Chin, J. Yu, and D. Suter, “Dynamic and hierarchical multi-structure geometric model fitting,” in Proc. Int. Conf. Computer Vision, Barcelona, Spain, 2011, pp. 1044–1051.
|
[50] |
L. Liang, W. Zhao, X. Hao, Y. Yang, K. Yang, L. Liang, and Q. Yang, “Image registration using two-layer cascade reciprocal pipeline and context-aware dissimilarity measure,” Neurocomputing, vol. 371, pp. 1–14, Jan. 2020. doi: 10.1016/j.neucom.2019.06.101
|
[51] |
M. Horst and R. Möller, “Visual place recognition for autonomous mobile robots,” Robotics, vol. 6, no. 2, p. 9, Apr. 2017. doi: 10.3390/robotics6020009
|
[52] |
J. Ma, A. Fan, X. Jiang, and G. Xiao, “Feature matching via motion-consistency driven probabilistic graphical model,” Int. J. Comput. Vision, vol. 130, no. 9, pp. 2249–2264, Jul. 2022. doi: 10.1007/s11263-022-01644-2
|
[53] |
G. Wang and Y. Chen, “Robust feature matching using guided local outlier factor,” Pattern Recognit., vol. 117, p. 107986, Sept. 2021. doi: 10.1016/j.patcog.2021.107986
|
[54] |
L. Zheng, G. Xiao, Z. Shi, S. Wang, and J. Ma, “MSA-net: Establishing reliable correspondences by multiscale attention network,” IEEE Trans. Image Process., vol. 31, pp. 4598–4608, Jul. 2022. doi: 10.1109/TIP.2022.3186535
|
[55] |
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li, “YFCC100M: The new data in multimedia research,” Commun. ACM, vol. 59, no. 2, pp. 64–73, Feb. 2016. doi: 10.1145/2812802
|
[56] |
J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big spaces reconstructed using SFM and object labels,” in Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013, pp. 1625–1632.
|
[57] |
J. Heinly, J. L. Schönberger, E. Dunn, and J.-M. Frahm, “Reconstructing the world in six days,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 3287–3295.
|
[58] |
D. Mishkin, J. Matas, and M. Perdoch, “MODS: Fast and robust method for two-view matching,” Comput. Vision Image Understanding, vol. 141, pp. 81–93, Dec. 2015. doi: 10.1016/j.cviu.2015.08.005
|
[59] |
V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk, “HPatches: A benchmark and evaluation of handcrafted and learned local descriptors,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Honolulu, USA, 2017, pp. 3852–3861.
|
[60] |
J.-W. Bian, Y.-H. Wu, J. Zhao, Y. Liu, L. Zhang, M.-M. Cheng, and I. Reid, “An evaluation of feature matchers for fundamental matrix estimation,” in Proc. 30th British Machine Vision Conf., Cardiff, UK, 2019, pp. 25.
|
[61] |
A. Mishchuk, D. Mishkin, F. Radenović, and J. Matas, “Working hard to know your neighbor’s margins: Local descriptor learning loss,” in Proc. 31st Int. Conf. Neural Information Processing Systems, Long Beach, USA, 2017, pp. 4829–4840.
|
[62] |
J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 573–580.
|
[63] |
A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI vision benchmark suite,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 3354–3361.
|
[64] |
A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples: Benchmarking large-scale scene reconstruction,” ACM Trans. Graphics, vol. 36, no. 4, p. 78, Jul. 2017.
|
[65] |
K. Wilson and N. Snavely, “Robust global translations with 1DSfM,” in Proc. 13th European Conf. Computer Vision, Zurich, Switzerland, 2014, pp. 61–75.
|
[66] |
R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. New York, USA: ACM Press, 1999.
|
[67] |
M. Cummins and P. Newman, “FAB-MAP: Probabilistic localization and mapping in the space of appearance,” Int. J. Rob. Res., vol. 27, no. 6, pp. 647–665, Jun. 2008. doi: 10.1177/0278364908090961
|
[68] |
X. Jiang, J. Ma, G. Xiao, Z. Shao, and X. Guo, “A review of multimodal image matching: Methods and applications,” Inf. Fusion, vol. 73, pp. 22–71, Sept. 2021. doi: 10.1016/j.inffus.2021.02.012
|
[69] |
L. Tang, Y. Deng, Y. Ma, J. Huang, and J. Ma, “SuperFusion: A versatile image registration and fusion network with semantic awareness,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 12, pp. 2121–2137, Dec. 2022. doi: 10.1109/JAS.2022.106082
|
[70] |
E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Proc. 9th European Conf. Computer Vision, Graz, Austria, 2006, pp. 430–443.
|
[71] |
J. Li, Q. Hu, and M. Ai, “RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform,” IEEE Trans. Image Process., vol. 29, pp. 3296–3310, Jan. 2020. doi: 10.1109/TIP.2019.2959244
|