A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 4
Apr.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
X. Wu, Z. Ren, and F. Yu, “Parameter-free shifted Laplacian reconstruction for multiple kernel clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1072–1074, Apr. 2024. doi: 10.1109/JAS.2023.123600
Citation: X. Wu, Z. Ren, and F. Yu, “Parameter-free shifted Laplacian reconstruction for multiple kernel clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 4, pp. 1072–1074, Apr. 2024. doi: 10.1109/JAS.2023.123600

Parameter-Free Shifted Laplacian Reconstruction for Multiple Kernel Clustering

doi: 10.1109/JAS.2023.123600
More Information
  • loading
  • [1]
    Y. Wang, Z. Zhang, and Y. Lin, “Multi-cluster feature selection based on isometric mapping,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 3, pp. 570–572, Mar. 2022. doi: 10.1109/JAS.2021.1004398
    [2]
    L. Zhang, S. Feng, G. Duan, Y. Li, and G. Liu, “Detection of microaneurysms in fundus images based on an attention mechanism,” Genes, vol. 10, no. 10, p. 817, Oct. 2019. doi: 10.3390/genes10100817
    [3]
    S. Wang, X. Lin, Z. Fang, S. Du, and G. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959
    [4]
    R. Wang, J. Lu, Y. Lu, F. Nie, and X. Li, “Discrete and parameter-free multiple kernel k-means,” IEEE Trans. Image Processing, vol. 31, pp. 2796–2808, Mar. 2022. doi: 10.1109/TIP.2022.3141612
    [5]
    Z. Ren, S. Yang, Q. Sun, and T. Wang, “Consensus affinity graph learning for multiple kernel clustering,” IEEE Trans. Cybern., vol. 51, no. 6, pp. 3273–3284, Jun. 2021. doi: 10.1109/TCYB.2020.3000947
    [6]
    S. Zhou, Q. Ou, X. Liu, S. Wang, L. Liu, S. Wang, E. Zhu, J. Yin, and X. Xu, “Multiple kernel clustering with compressed subspace alignment,” IEEE Trans. Neural Networks and Learning Syst., vol. 34, no. 1, pp. 252–263, Jan. 2023. doi: 10.1109/TNNLS.2021.3093426
    [7]
    S. Zhou, X. Liu, J. Liu, X. Guo, Y. Zhao, E. Zhu, Y. Zhai, J. Yin, and W. Gao, “Multi-view spectral clustering with optimal neighborhood Laplacian matrix,” in Proc. AAAI Conf. Artificial Intelligence, 2020, vol. 34, pp. 6965–6972.
    [8]
    J. Zhang, L. Li, S. Wang, J. Liu, Y. Liu, X. Liu, and E. Zhu, “Multiple kernel clustering with dual noise minimization,” in Proc. 30th ACM Int. Conf. Multimedia, 2022, pp. 3440–3450.
    [9]
    Y. Li, P. Hu, Z. Liu, D. Peng, J. Zhou, and X. Peng, “Contrastive clustering,” in Proc. AAAI Conf. Artificial Intelligence, 2021, vol. 35, pp. 8547–8555.
    [10]
    H. Wang, Y. Yang, B. Liu, and H. Fujita, “A study of graph-based system for multi-view clustering,” Knowl.-Based Systems, vol. 163, pp. 1009–1019, Jan. 2019. doi: 10.1016/j.knosys.2018.10.022
    [11]
    A. Khan and P. Maji, “Approximate graph Laplacians for multimodal data clustering,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 43, no. 3, pp. 798–813, Mar. 2021. doi: 10.1109/TPAMI.2019.2945574
    [12]
    S. Yu, X. H. Liu, L.-C. Tranchevent, W. Glänzel, J. AK. Suykens, B. De Moor, and Y. Moreau, “Optimized data fusion for K-means Laplacian clustering,” Bioinformatics, vol. 27, no. 1, pp. 118–126, Jan. 2011. doi: 10.1093/bioinformatics/btq569
    [13]
    J. Dattorro, Convex Optimization & Euclidean Distance Geometry. Palo Alto, USA: Meboo, 2005.
    [14]
    J. You, Z. Ren, Q. Sun, Y. Sun, and X. Li, “Approximate shifted Laplacian reconstruction for multiple kernel clustering,” in Proc. 30th ACM Int. Conf. Multimedia, 2022, pp. 2862–2870.
    [15]
    L. Du, P. Zhou, L. Shi, H. Wang, M. Fan, W. Wang, and Y.-D. Shen, “Robust multiple kernel k-means using l2; 1-norm,” in Proc. 24th Int. Conf. Artificial Intelligence, 2015, pp. 3476–3482.
    [16]
    F. Nie, G. Cai, and X. Li, “Multi-view clustering and semi-supervised classification with adaptive neighbours,” in Proc. 31st AAAI Conf. Artificial Intelligence, 2017, vol. 31, pp. 2408–2414.
    [17]
    M. Chen, L. Huang, C. Wang, and D. Huang, “Multi-view clustering in latent embedding space,” in Proc. AAAI Conf. Artificial Intelligence, 2020, vol. 34, pp. 3513–3520.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (206) PDF downloads(31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return