IEEE/CAA Journal of Automatica Sinica
Citation: | B. S. Shi and K. X. Liu, “Regularization by multiple dual frames for compressed sensing magnetic resonance imaging with convergence analysis,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 11, pp. 2136–2153, Nov. 2023. doi: 10.1109/JAS.2023.123543 |
Plug-and-play priors are popular for solving ill-posed imaging inverse problems. Recent efforts indicate that the convergence guarantee of the imaging algorithms using plug-and-play priors relies on the assumption of bounded denoisers. However, the bounded properties of existing plugged Gaussian denoisers have not been proven explicitly. To bridge this gap, we detail a novel provable bounded denoiser termed as BMDual, which combines a trainable denoiser using dual tight frames and the well-known block-matching and 3D filtering (BM3D) denoiser. We incorporate multiple dual frames utilized by BMDual into a novel regularization model induced by a solver. The proposed regularization model is utilized for compressed sensing magnetic resonance imaging (CSMRI). We theoretically show the bound of the BMDual denoiser, the bounded gradient of the CSMRI data-fidelity function, and further demonstrate that the proposed CSMRI algorithm converges. Experimental results also demonstrate that the proposed algorithm has a good convergence behavior, and show the effectiveness of the proposed algorithm.
[1] |
M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med., vol. 58, no. 6, pp. 1182–1195, Dec. 2007. doi: 10.1002/mrm.21391
|
[2] |
X. Zhang, D. Guo, Y. Huang, Y. Chen, L. Wang, F. Huang, Q. Xu, and X. Qu, “Image reconstruction with low-rankness and self-consistency of k-space data in parallel MRI,” Med. Image Anal., vol. 63, p. 101687, Jul. 2020. doi: 10.1016/j.media.2020.101687
|
[3] |
Q. Liu, Q. Yang, H. Cheng, S. Wang, M. Zhang, and D. Liang, “Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors,” Magn. Reson. Med., vol. 83, no. 1, pp. 322–336, Jan. 2020. doi: 10.1002/mrm.27921
|
[4] |
Y. Hu, X. Zhang, D. Chen, Z. Yan, X. Shen, G. Yan, L. Ouyang, J. Lin, J. Dong, and X. Qu, “Spatiotemporal flexible sparse reconstruction for rapid dynamic contrast-enhanced MRI,” IEEE Trans. Biomed. Eng., vol. 69, no. 1, pp. 229–243, Jan. 2022. doi: 10.1109/TBME.2021.3091881
|
[5] |
X. Zhang, H. Lu, D. Guo, L. Bao, F. Huang, Q. Xu, and X. Qu, “A guaranteed convergence analysis for the projected fast iterative soft-thresholding algorithm in parallel MRI,” Med. Image Anal., vol. 69, p. 101987, Apr. 2021. doi: 10.1016/j.media.2021.101987
|
[6] |
Y. Liu, Z. Zhan, J. F. Cai, D. Guo, Z. Chen, and X. Qu, “Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging,” IEEE Trans. Med. Imaging, vol. 35, no. 9, pp. 2130–2140, Sept. 2016. doi: 10.1109/TMI.2016.2550080
|
[7] |
S. Ravishankar and Y. Bresler, “MR image reconstruction from highly undersampled k-space data by dictionary learning,” IEEE Trans. Med. Imaging, vol. 30, no. 5, pp. 1028–1041, May 2011. doi: 10.1109/TMI.2010.2090538
|
[8] |
X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen, “Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator,” Med. Image Anal., vol. 18, no. 6, pp. 843–856, Aug. 2014. doi: 10.1016/j.media.2013.09.007
|
[9] |
W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang, “Compressive sensing via nonlocal low-rank regularization,” IEEE Trans. Image Process., vol. 23, no. 8, pp. 3618–3632, Aug. 2014. doi: 10.1109/TIP.2014.2329449
|
[10] |
M. Jacob, M. P. Mani, and J. C. Ye, “Structured low-rank algorithms: Theory, magnetic resonance applications, and links to machine learning,” IEEE Signal Process. Mag., vol. 37, no. 1, pp. 54–68, Jan. 2020. doi: 10.1109/MSP.2019.2950432
|
[11] |
J. P. Haldar and K. Setsompop, “Linear predictability in magnetic resonance imaging reconstruction: Leveraging shift-invariant Fourier structure for faster and better imaging,” IEEE Signal Process. Mag., vol. 37, no. 1, pp. 69–82, Jan. 2020. doi: 10.1109/MSP.2019.2949570
|
[12] |
J. F. Cai, J. K. Choi, and K. Wei, “Data driven tight frame for compressed sensing MRI reconstruction via off-the-grid regularization,” SIAM J. Imaging Sci., vol. 13, no. 3, pp. 1272–1301, Jan. 2020. doi: 10.1137/19M1298524
|
[13] |
Y. Chen, C. B. Schonlieb, P. Liò, T. Leiner, P. L. Dragotti, G. Wang, D. Rueckert, D. Firmin, and G. Yang, “AI-based reconstruction for fast MRI — A systematic review and meta-analysis,” Proc. IEEE, vol. 110, no. 2, pp. 224–245, Feb. 2022. doi: 10.1109/JPROC.2022.3141367
|
[14] |
M. Seitzer, G. Yang, J. Schlemper, O. Oktay, T. Würfl, V. Christlein, T. Wong, R. Mohiaddin, D. Firmin, J. Keegan, D. Rueckert, and A. Maier, “Adversarial and perceptual refinement for compressed sensing MRI reconstruction,” in Proc. 21st Int. Conf. Medical Image Computing and Computer Assisted Intervention, Granada, Spain, 2018, pp. 232–240.
|
[15] |
S. Wang, Z. Su, L. Ying, X. Peng, S. Zhu, F. Liang, D. Feng, and D. Liang, “Accelerating magnetic resonance imaging via deep learning,” in Proc. IEEE 13th Int. Symp. Biomedical Imaging, Prague, Czech Republic, 2016, pp. 514–517.
|
[16] |
F. Hashimoto, K. Ote, T. Oida, A. Teramoto, and Y. Ouchi, “Compressed-sensing magnetic resonance image reconstruction using an iterative convolutional neural network approach,” Appl. Sci., vol. 10, no. 6, p. 1902, Mar. 2020. doi: 10.3390/app10061902
|
[17] |
P. Deora, B. Vasudeva, S. Bhattacharya, and P. M. Pradhan, “Structure preserving compressive sensing MRI reconstruction using generative adversarial networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 2020, pp. 2211–2219.
|
[18] |
G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo, and D. Firmin, “DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction,” IEEE Trans. Med. Imaging, vol. 37, no. 6, pp. 1310–1321, Jun. 2018. doi: 10.1109/TMI.2017.2785879
|
[19] |
T. M. Quan, T. Nguyen-Duc, and W.-K. Jeong, “Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss,” IEEE Trans. Med. Imaging, vol. 37, no. 6, pp. 1488–1497, Jun. 2018. doi: 10.1109/TMI.2018.2820120
|
[20] |
G. Yang, Q. Ye, and J. Xia, “Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond,” Inf. Fusion, vol. 77, pp. 29–52, Jan. 2022. doi: 10.1016/j.inffus.2021.07.016
|
[21] |
H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep learning architecture for inverse problems,” IEEE Trans. Med. Imaging, vol. 38, no. 2, pp. 394–405, Feb. 2019. doi: 10.1109/TMI.2018.2865356
|
[22] |
Y. Yang, J. Sun, H. Li, and Z. Xu, “Deep ADMM-Net for compressive sensing MRI,” in Proc. 30th Int. Conf. Neural Information Processing Systems, Barcelona, Spain, 2016, pp. 10–18.
|
[23] |
Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A deep learning approach for image compressive sensing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 521–538, Mar. 2020. doi: 10.1109/TPAMI.2018.2883941
|
[24] |
Y. Yang, N. Wang, H. Yang, J. Sun, and Z. Xu, “Model-driven deep attention network for ultra-fast compressive sensing MRI guided by cross-contrast MR image,” in Proc. 23rd Int. Conf. Medical Image Computing and Computer Assisted Intervention, Lima, Peru, 2020, pp. 188–198.
|
[25] |
J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A deep cascade of convolutional neural networks for dynamic MR image reconstruction,” IEEE Trans. Med. Imaging, vol. 37, no. 2, pp. 491–503, Feb. 2018. doi: 10.1109/TMI.2017.2760978
|
[26] |
A. Q. Wang, A. V. Dalca, and M. R. Sabuncu, “Neural network-based reconstruction in compressed sensing MRI without fully-sampled training data,” in Proc. 3rd Int. Workshop Machine Learning for Medical Image Reconstruction, Lima, Peru, 2020, pp. 27–37.
|
[27] |
R. Ahmad, C. A. Bouman, G. T. Buzzard, S. Chan, S. Z. Liu, E. T. Reehorst, and P. Schniter, “Plug-and-play methods for magnetic resonance imaging: Using denoisers for image recovery,” IEEE Signal Process. Mag., vol. 37, no. 1, pp. 105–116, Jan. 2020. doi: 10.1109/MSP.2019.2949470
|
[28] |
S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for model based reconstruction,” in Proc. IEEE Global Conf. Signal and Information Processing, Austin, TX, USA, 2013, pp. 945–948.
|
[29] |
X. Yuan, Y. Liu, J. Suo, and Q. Dai, “Plug-and-play algorithms for large-scale snapshot compressive imaging,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020, pp. 1444–1454.
|
[30] |
K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6360–6376, Oct. 2022. doi: 10.1109/TPAMI.2021.3088914
|
[31] |
Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization by denoising (RED),” SIAM J. Imaging Sci., vol. 10, no. 4, pp. 1804–1844, Jan. 2017. doi: 10.1137/16M1102884
|
[32] |
B. Shi, Q. Lian, and H. Chang, “Deep prior-based sparse representation model for diffraction imaging: A plug-and-play method,” Signal Process., vol. 168, p. 107350, Mar. 2020. doi: 10.1016/j.sigpro.2019.107350
|
[33] |
K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007. doi: 10.1109/TIP.2007.901238
|
[34] |
K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017. doi: 10.1109/TIP.2017.2662206
|
[35] |
H. Zheng, H. Yong, and L. Zhang, “Deep convolutional dictionary learning for image denoising,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021, pp. 630–641.
|
[36] |
E. M. Eksioglu, “Decoupled algorithm for MRI reconstruction using nonlocal block matching model: BM3D-MRI,” J. Math. Imaging Vis., vol. 56, no. 3, pp. 430–440, Mar. 2016. doi: 10.1007/s10851-016-0647-7
|
[37] |
E. M. Eksioglu and A. K. Tanc, “Denoising AMP for MRI reconstruction: BM3D-AMP-MRI,” SIAM J. Imaging Sci., vol. 11, no. 3, pp. 2090–2109, 2018. doi: 10.1137/18M1169655
|
[38] |
E. K. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin, “Plug-and-play methods provably converge with properly trained denoisers,” in Proc. 36th Int. Conf. Machine Learning, Long Beach, CA, USA, 2019, pp. 5546–5557.
|
[39] |
P. Bohra, D. Perdios, A. Goujon, S. Emery, and M. Unser, “Learning Lipschitz-controlled activation functions in neural networks for plug-and-play image reconstruction methods,” in Proc. Workshop Deep Learning and Inverse Problems, Montreal, Canada, 2021.
|
[40] |
A. M. Teodoro, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “Scene-adapted plug-and-play algorithm with convergence guarantees,” in Proc. IEEE 27th Int. Workshop Machine Learning for Signal Processing, Tokyo, Japan, 2017, pp. 1–6.
|
[41] |
R. G. Gavaskar and K. N. Chaudhury, “Plug-and-play ISTA converges with kernel denoisers,” IEEE Signal Process. Lett., vol. 27, pp. 610–614, Apr. 2020. doi: 10.1109/LSP.2020.2986643
|
[42] |
G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman, “Plug-and-play unplugged: Optimization-free reconstruction using consensus equilibrium,” SIAM J. Imaging Sci., vol. 11, no. 3, pp. 2001–2020, Jan. 2018. doi: 10.1137/17M1122451
|
[43] |
S. H. Chan, X. Wang, and O. A. Elgendy, “Plug-and-play ADMM for image restoration: Fixed-point convergence and applications,” IEEE Trans. Comput. Imaging, vol. 3, no. 1, pp. 84–98, Mar. 2017. doi: 10.1109/TCI.2016.2629286
|
[44] |
R. G. Gavaskar and K. N. Chaudhury, “On the proof of fixed-point convergence for plug-and-play ADMM,” IEEE Signal Process. Lett., vol. 26, no. 12, pp. 1817–1821, Dec. 2019. doi: 10.1109/LSP.2019.2950611
|
[45] |
D. Geman and C. Yang, “Nonlinear image recovery with half quadratic regularization,” IEEE Trans. Image Process., vol. 4, no. 7, pp. 932–946, Jul. 1995. doi: 10.1109/83.392335
|
[46] |
M. Terris, A. Repetti, J.-C. Pesquet, and Y. Wiaux, “Enhanced convergent PnP algorithms for image restoration,” in Proc. IEEE Int. Conf. Image Processing, Anchorage, AK, USA, 2021, pp. 1684–1688.
|
[47] |
S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way. 3rd ed. Orlando, USA: Academic Press, 2008.
|
[48] |
K. Isogawa, T. Ida, T. Shiodera, and T. Takeguchi, “Deep shrinkage convolutional neural network for adaptive noise reduction,” IEEE Signal Process. Lett., vol. 25, no. 2, pp. 224–228, Feb. 2018. doi: 10.1109/LSP.2017.2782270
|
[49] |
Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image restoration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 7, pp. 2480–2495, Jul. 2021. doi: 10.1109/TPAMI.2020.2968521
|
[50] |
J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 7132–7141.
|
[51] |
A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational image deblurring,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1715–1728, Apr. 2012. doi: 10.1109/TIP.2011.2176954
|
[52] |
B. Landman, “2013 Diencephalon standard challenge”.
|
[53] |
N. Bien, P. Rajpurkar, R. L. Ball, J. Irvin, A. Park, E. Jones, M. Bereket, B. N. Patel, K. W. Yeom, K. Shpanskaya, S. Halabi, E. Zucker, G. Fanton, D. F. Amanatullah, C. F. Beaulieu, G. M. Riley, R. J. Stewart, F. G. Blankenberg, D. B. Larson, R. H. Jones, C. P. Langlotz, A. Y. Ng, and M. P. Lungren, “Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet,” PLoS Med., vol. 15, no. 11, p. e1002699, Nov. 2018. doi: 10.1371/journal.pmed.1002699
|
[54] |
B. Shi, Q. Lian, S. Chen, and X. Fan, “SBM3D: Sparse regularization model induced by BM3D for weighted diffraction imaging,” IEEE Access, vol. 6, pp. 46266–46280, Aug. 2018. doi: 10.1109/ACCESS.2018.2865997
|
[55] |
V. Y. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng., vol. 56, no. 9, p. 094103, Sept. 2017.
|
[56] |
Q. Zhang, J. Xiao, C. Tian, J. C.-W. Lin, and S. Zhang, “A robust deformed convolutional neural network (CNN) for image denoising,” CAAI Trans. Intell. Technol., vol. 8, no. 2, pp. 331–342, Jun. 2023. doi: 10.1049/cit2.12110
|
[57] |
C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, and D. Zhang, “Multi-stage image denoising with the wavelet transform,” Pattern Recogn., vol. 134, p. 109050, Feb. 2023. doi: 10.1016/j.patcog.2022.109050
|
[58] |
S. Herbreteau and C. Kervrann, “DCT2net: An interpretable shallow CNN for image denoising,” IEEE Trans. Image Process., vol. 31, pp. 4292–4305, Jun. 2022. doi: 10.1109/TIP.2022.3181488
|