A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 9
Sep.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
D. X. Ji, Z. B. Wei, C. Y. Tian, H. R. Cai, and J. H. Zhao, “Deep transfer ensemble learning-based diagnostic of lithium-ion battery,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1899–1901, Sept. 2023. doi: 10.1109/JAS.2022.106001
Citation: D. X. Ji, Z. B. Wei, C. Y. Tian, H. R. Cai, and J. H. Zhao, “Deep transfer ensemble learning-based diagnostic of lithium-ion battery,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 9, pp. 1899–1901, Sept. 2023. doi: 10.1109/JAS.2022.106001

Deep Transfer Ensemble Learning-Based Diagnostic of Lithium-Ion Battery

doi: 10.1109/JAS.2022.106001
More Information
  • loading
  • [1]
    K. Liu, K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, and Q.-L. Han, “Towards long lifetime battery: AI-based manufacturing and management,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 7, pp. 1139–1165, Jul. 2022. doi: 10.1109/JAS.2022.105599
    [2]
    S. Shen, M. Sadoughi, M. Li, Z. Wang, and C. Hu, “Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries,” Applied Energy, vol. 260, p. 114296, 2020.
    [3]
    Y. Tan and G. Zhao, “Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries,” IEEE Industrial Electronics, vol. 67, no. 10, pp. 8723–8731, 2019. doi: 10.1109/TIE.2019.2946551
    [4]
    Y. Che, Z. Deng, X. Lin, L. Hu, and X. Hu, “Predictive battery health management with transfer learning and online model correction,” IEEE Trans. Vehicular Technology, vol. 70, no. 2, pp. 1269–1277, 2021.
    [5]
    B. Saha, and K. Goebel, “Battery data set,” in NASA AMES Prognostics Data Repository, [Online], Available: https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-datarepository/#battery, 2007.
    [6]
    C. Birkl, Oxford Battery Degradation Dataset 1, Oxford University, UK, 2017.
    [7]
    C. Zhang, and Y. Ma, Ensemble Machine Learning: Methods and Applications, Berlin, Heidelberg, Germany: Springer, 2012.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (375) PDF downloads(135) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return