IEEE/CAA Journal of Automatica Sinica
Citation: | Y. H. Du, L. Wang, L. N. Xing, J. G. Yan, and M. S. Cai, "Data-Driven Heuristic Assisted Memetic Algorithm for Efficient Inter-Satellite Link Scheduling in the BeiDou Navigation Satellite System," IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1800-1816, Nov. 2021. doi: 10.1109/JAS.2021.1004174 |
[1] |
The BDS-3 constellation deployment is fully completed six months ahead of schedule UNOOSA sends a congratulation letter. [Online]. (23/06/2020) Available: http://en.beidou.gov.cn/WHATSNEWS/202006/t20200623_20692.html
|
[2] |
BeiDou Navigation Satellite System. [Online]. (23/06/2020) Available: http://en.beidou.gov.cn/SYSTEMS/System.
|
[3] |
S. C. Fisher and K. Ghassemi, “GPS IIF-the next generation,” Proc. IEEE, vol. 87, no. 1, pp. 24–47, 1999. doi: 10.1109/5.736340
|
[4] |
L. Y. Sun, Y. K. Wang, W. D. Huang, J. Yang, Y. F. Zhou, and D. N. Yang, “Inter-satellite communication and ranging link assignment for navigation satellite systems,” GPS Solut., vol. 22, no. 2, 2018. doi: 10.1007/s10291-018-0704-3
|
[5] |
L. Y. Sun, W. D. Huang, Y. F. Zhou, J. Yang, and Y. K. Wang, “Monitor link assignment for reentry users based on BeiDou inter-satellite links,” Adv. Space Res., vol. 64, no. 3, pp. 747–758, 2019. doi: 10.1016/j.asr.2019.05.015
|
[6] |
F. A. Fernández, “Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data,” Adv. Space Res., vol. 47, no. 5, pp. 786–801, 2011. doi: 10.1016/j.asr.2010.10.002
|
[7] |
X. W. Wang, G. H. Wu, L. N. Xing, and W. Pedrycz, “Agile earth observation satellite scheduling over 20 years: Formulations, methods and future directions,” IEEE Syst. J., 2020. DOI: 10.1109/JSYST.2020.2997050
|
[8] |
Y. H. Du, L. N. Xing, F. Yao, and Y. G. Chen, “Survey on models, algorithms and general techniques for spacecraft mission scheduling, ” Acta Autom. Sinica, 2020. DOI: 10.16383/j.aas.c190656.
|
[9] |
S. Xiang, Y. G. Chen, G. L. Li, and L. N. Xing, “Review on satellite autonomous and collaborative task scheduling planning,” Acta Autom. Sinica, vol. 45, no. 2, pp. 252–264, 2019.
|
[10] |
D. N. Yang, J. Yang, and P. J. Xu, “Timeslot scheduling of inter-satellite links based on a system of a narrow beam with time division,” GPS Solut., vol. 21, no. 3, pp. 999–1011, 2017. doi: 10.1007/s10291-016-0587-0
|
[11] |
S. Y. Liu, J. Yang, X. Y. Guo, and L. Y. Sun, “Inter-satellite link assignment for the laser/radio hybrid network in navigation satellite systems,” GPS Solut., vol. 24, no. 2, p. 49, 2020.
|
[12] |
T. J. Zhang, L. K. Ke, J. S. Li, J. Li, Z. X. Li, and J. Q. Huang, “Fireworks algorithm for the satellite link scheduling problem in the navigation constellation,” in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada, 2016, pp. 4029–4037.
|
[13] |
L. Wang, C. X. Jiang, L. L. Kuang, S. Wu, and S. Guo, “TDRSS scheduling algorithm for non-uniform time-space distributed missions,” in Proc. IEEE Global Communications Conf., Singapore, 2017, pp. 1–6.
|
[14] |
J. H. Huang, Y. X. Su, W. X. Liu, and F. X. Wang, “Optimization design of inter-satellite link (ISL) assignment parameters in GNSS based on genetic algorithm,” Adv. Space Res., vol. 60, no. 12, pp. 2574–2580, 2017. doi: 10.1016/j.asr.2016.12.027
|
[15] |
X. G. Chu and Y. W. Chen, “Time division inter-satellite link topology generation problem: Modeling and solution,” Int. J. Satell. Comm. N., vol. 36, no. 2, pp. 194–206, 2018. doi: 10.1002/sat.1212
|
[16] |
M. J. Dong, B. J. Lin, Y. C. Liu, and L. S. Zhou, “Topology dynamic optimization for inter-satellite laser links of navigation satellite based on MOSA,” China Laser, vol. 45, no. 7, pp. 217–228, 2018.
|
[17] |
S. Liu, G. Q. Bai, and Y. W. Chen, “Prediction method for imaging task schedulability of earth observing network,” J. Astronaut., vol. 36, no. 5, pp. 583–588, 2015.
|
[18] |
L. N. Xing, Y. Wang, Y. M. He, and L. He, “An earth observation satellite task schedulability prediction method based on BP artificial network,” Chinese J. Manage. Sci., vol. 23, no. s1, pp. 117–124, 2015.
|
[19] |
Y. H. Du, T. Wang, B. Xin, L. Wang, Y. G. Chen, and L. N. Xing, “A data-driven parallel scheduling approach for multiple agile earth observation satellites,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 679–693, 2020. doi: 10.1109/TEVC.2019.2934148
|
[20] |
Y. J. Song, Z. Y. Zhou, Z. S. Zhang, F. Yao, and Y. W. Chen, “A framework involving MEC: Imaging satellites mission planning,” Neural Comput. Appl., vol. 32, pp. 15329–15340, 2020. doi: 10.1007/s00521-019-04047-6
|
[21] |
L. Wang and J. W. Lu, “A memetic algorithm with competition for the capacitated green vehicle routing problem,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 516–526, 2019. doi: 10.1109/JAS.2019.1911405
|
[22] |
Y. Yu, S. C. Gao, Y. R. Wang, and Y. Todo, “Global optimum-based search differential evolution,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 2, pp. 379–394, 2019. doi: 10.1109/JAS.2019.1911378
|
[23] |
Y. H. Du, L. N. Xing, J. W. Zhang, Y. G. Chen, and Y. M. He, “MOEA based memetic algorithms for multi-objective satellite range scheduling problem,” Swarm Evol. Comput., vol. 50, 2019. doi: 10.1016/j.swevo.2019.100576
|
[24] |
T. Huang, Y. J. Gong, S. Kwong, H. Wang, and J. Zhang, “A niching memetic algorithm for multi-solution traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 24, no. 3, pp. 508–522, Jun. 2020.
|
[25] |
A. V. Eremeev and Y. V. Kovalenko, “A memetic algorithm with optimal recombination for the asymmetric travelling salesman problem,” Memet. Comput., vol. 12, no. 1, pp. 23–36, 2020. doi: 10.1007/s12293-019-00291-4
|
[26] |
L. Wang, S. Y. Wang, and X. L. Zheng, “A hybrid estimation of distribution algorithm for unrelated parallel machine scheduling with sequence-dependent setup times,” IEEE/CAA J. Autom. Sinica, vol. 3, no. 3, pp. 235–246, 2016. doi: 10.1109/JAS.2016.7508797
|
[27] |
J. Deng, L. Wang, S. Y. Wang, and X. L. Zheng, “A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem,” Int. J. Prod. Res., vol. 54, no. 12, pp. 3561–3577, 2016. doi: 10.1080/00207543.2015.1084063
|
[28] |
J. Deng and L. Wang, “A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem,” Swarm Evol. Comput., vol. 32, pp. 121–131, 2017. doi: 10.1016/j.swevo.2016.06.002
|
[29] |
H. E. Kiziloz and T. Dokeroglu, “A robust and cooperative parallel Tabu search algorithm for the maximum vertex weight clique problem,” Comput. Ind. Eng., vol. 118, pp. 54–66, 2018. doi: 10.1016/j.cie.2018.02.018
|
[30] |
L. G. B. Ruíz, M. I. Capel, and M. C. Pegalajar, “Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem,” Appl. Soft Comput., vol. 76, pp. 356–368, 2019. doi: 10.1016/j.asoc.2018.12.028
|
[31] |
U. Pferschy and J. Schauer, “Approximation of knapsack problems with conflict and forcing graphs,” J. Comb. Optim., vol. 33, no. 4, pp. 1300–1323, 2017. doi: 10.1007/s10878-016-0035-7
|
[32] |
Z. Y. Zhao, S. X. Liu, M. C. Zhou, X. W. Guo, and L. Qi, “Decomposition method for new single-machine scheduling problems from steel production systems,” IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1376–1387, 2020.
|
[33] |
K. Z. Gao, Z. G. Cao, L. Zhang, Z. H. Chen, Y. Y. Han, and Q. K. Pan, “A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 4, pp. 904–916, 2019. doi: 10.1109/JAS.2019.1911540
|
[34] |
H. T. Yuan, M. C. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource provisioning and task scheduling for heterogeneous applications in distributed green clouds,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1380–1393, 2020.
|
[35] |
Z. Zhao, S. Liu, M. C. Zhou, D. You, and X. Guo, “Heuristic scheduling of batch production processes based on petri nets and iterated greedy algorithms,” IEEE Trans. Autom. Sci. Eng., 2020. DOI: 10.1109/TASE.2020.3027532.
|
[36] |
G. S. Peng, R. Dewil, C. Verbeeck, A. Gunawan, L. N. Xing, and P. Vansteenwegen, “Agile earth observation satellite scheduling: An orienteering problem with time-dependent profits and travel times,” Comput. Oper. Res., vol. 111, pp. 84–98, 2019. doi: 10.1016/j.cor.2019.05.030
|
[37] |
L. He, X. L. Liu, G. Laporte, Y. W. Chen, and Y. G. Chen, “An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling,” Comput. Oper. Res., vol. 100, pp. 12–25, 2018. doi: 10.1016/j.cor.2018.06.020
|
[38] |
L. He, M. de Weerdt, and N. Yorke-Smith, “Time/sequence-dependent scheduling: The design and evaluation of a general purpose Tabu-based adaptive large neighbourhood search algorithm,” J. Intell. Manuf., vol. 31, pp. 1051–1078, 2020. doi: 10.1007/s10845-019-01518-4
|
[39] |
T. Q. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, San Francisco, USA, 2016, pp. 785–794.
|
[40] |
J. C. Zhong, Y. S. Sun, W. Peng, M. Z. Xie, J. H. Yang, and X. W. Tang, “XGBFEMF: An XGBoost-based framework for essential protein prediction,” IEEE Trans. NanoBiosci., vol. 17, no. 3, pp. 243–250, 2018. doi: 10.1109/TNB.2018.2842219
|
[41] |
H. Nguyen, X. N. Bui, H. B. Bui, and D. T. Cuong, “Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study,” Acta Geophys., vol. 67, no. 2, pp. 477–490, 2019. doi: 10.1007/s11600-019-00268-4
|
[42] |
W. J. Zhu, X. K. Liu, M. L. Xu, and H. M. Wu, “Predicting the results of RNA molecular specific hybridization using machine learning,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 6, pp. 1384–1396, 2019. doi: 10.1109/JAS.2019.1911756
|
[43] |
A. Samat, E. Li, W. Wang, S. Liu, C. Lin, and J. Abuduwaili, “Me-ta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles,” Remote Sensing, vol. 12, no. 12, p. 1973, 2020.
|
[44] |
S. Raschka and V. Mirjalili, Python Machine Learning, Packt Publishing Ltd, 2017.
|
[45] |
D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2017.
|