A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 8 Issue 4
Apr.  2021

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras, and Xiaochan Wang, "Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 718-752, Apr. 2021. doi: 10.1109/JAS.2021.1003925
Citation: Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras, and Xiaochan Wang, "Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies," IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 718-752, Apr. 2021. doi: 10.1109/JAS.2021.1003925

Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies

doi: 10.1109/JAS.2021.1003925
Funds:  This work was supported in part by the Research Start-Up Fund for Talent Researcher of Nanjing Agricultural University (77H0603) and in part by the National Natural Science Foundation of China (62072248)
More Information
  • This paper presents a comprehensive review of emerging technologies for the internet of things (IoT)-based smart agriculture. We begin by summarizing the existing surveys and describing emergent technologies for the agricultural IoT, such as unmanned aerial vehicles, wireless technologies, open-source IoT platforms, software defined networking (SDN), network function virtualization (NFV) technologies, cloud/fog computing, and middleware platforms. We also provide a classification of IoT applications for smart agriculture into seven categories: including smart monitoring, smart water management, agrochemicals applications, disease management, smart harvesting, supply chain management, and smart agricultural practices. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward supply chain management based on the blockchain technology for agricultural IoTs. Furthermore, we present real projects that use most of the aforementioned technologies, which demonstrate their great performance in the field of smart agriculture. Finally, we highlight open research challenges and discuss possible future research directions for agricultural IoTs.

     

  • loading
  • [1]
    “World population prospects 2019: Highlights,” [Online]. Available: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. Accessed on: Mar. 24, 2020.
    [2]
    “AQUASTAT,” [Online]. Available: http://www.fao.org/aquastat/en/overview/methodology/water-use. Accessed on: Mar. 24, 2020.
    [3]
    “More people, more food, worse water?” [Online]. Available: http://www.fao.org/3/ca0146en/CA0146EN.pdf. Accessed on: Mar. 24, 2020.
    [4]
    “The future of food and agriculture: Alternative pathways to 2050,” [Online]. Available: http://www.fao.org/3/CA1553EN/ca1553en.pdf. Accessed on: Mar. 24, 2020.
    [5]
    J. M. Talavera, L. E. Tobón, J. A. Gómez, M. A. Culman, J. M. Aranda, D. T. Parra, L. A. Quiroz, A. Hoyos, and L. E. Garreta, “Review of IoT applications in agro-industrial and environmental fields,” Comput. Electron. Agr., vol. 142, pp. 283–297, Nov. 2017. doi: 10.1016/j.compag.2017.09.015
    [6]
    P. P. Ray, “Internet of things for smart agriculture: Technologies, practices and future direction,” J. Ambient Intell. Smart Environ., vol. 9, no. 4, pp. 395–420, Jun. 2017. doi: 10.3233/AIS-170440
    [7]
    A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of things in agriculture, recent advances and future challenges,” Biosyst. Eng., vol. 164, pp. 31–48, Dec. 2017. doi: 10.1016/j.biosystemseng.2017.09.007
    [8]
    O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and M. N. Hindia, “An overview of internet of things (IoT) and data analytics in agriculture: Benefits and challenges,” IEEE Int. Things J., vol. 5, no. 5, pp. 3758–3773, Oct. 2018. doi: 10.1109/JIOT.2018.2844296
    [9]
    A. Khanna and S. Kaur, “Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture,” Comput. Electron. Agr., vol. 157, pp. 218–231, Feb. 2019. doi: 10.1016/j.compag.2018.12.039
    [10]
    X. J. Shi, X. S. An, Q. X. Zhao, H. M. Liu, L. M. Xia, X. Sun, and Y. M. Guo, “State-of-the-art internet of things in protected agriculture,” Sensors, vol. 19, no. 8, Article No. 1833, Apr. 2019. doi: 10.3390/s19081833
    [11]
    J. H. Ruan, H. Jiang, C. S. Zhu, X. P. Hu, Y. Shi, T. J. Liu, W. Z. Rao, and F. T. S. Chan, “Agriculture IoT: Emerging trends, cooperation networks, and outlook,” IEEE Wirel. Commun., vol. 26, no. 6, pp. 56–63, Dec. 2019. doi: 10.1109/MWC.001.1900096
    [12]
    X. Feng, F. Yan, and X. Y. Liu, “Study of wireless communication technologies on internet of things for precision agriculture,” Wirel. Pers. Commun., vol. 108, no. 3, pp. 1785–1802, Oct. 2019. doi: 10.1007/s11277-019-06496-7
    [13]
    U. Shafi, R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi, and N. Iqbal, “Precision agriculture techniques and practices: From considerations to applications,” Sensors, vol. 19, no. 17, Article No. 3976, Sept. 2019.
    [14]
    M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, Aug. 2019. doi: 10.1109/ACCESS.2019.2932609
    [15]
    M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A survey on the role of IoT in agriculture for the implementation of smart farming,” IEEE Access, vol. 7, pp. 156237–156271, Oct. 2019. doi: 10.1109/ACCESS.2019.2949703
    [16]
    P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscholios, “A compilation of UAV applications for precision agriculture,” Comp. Netw., vol. 172, Article No. 107148, May 2020. doi: 10.1016/j.comnet.2020.107148
    [17]
    M. A. Ferrag, L. Shu, X. Yang, A. Derhab, and L. Maglaras, “Security and privacy for green IoT-based agriculture: Review, blockchain solutions, and challenges,” IEEE Access, vol. 8, pp. 32031–32053, Feb. 2020. doi: 10.1109/ACCESS.2020.2973178
    [18]
    Y. Liu, X. Y. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges,” IEEE Trans. Ind. Inform., 2020. DOI: 10.1109/TII.2020.3003910
    [19]
    K. Huang, L. Shu, K. L. Li, F. Yang, G. J. Han, X. C. Wang, and S. Pearson, “Photovoltaic agricultural internet of things towards realizing the next generation of smart farming,” IEEE Access, vol. 8, pp. 76300–76312, Apr. 2020. doi: 10.1109/ACCESS.2020.2988663
    [20]
    G. Fortino, W. Russo, C. Savaglio, W. M. Shen, and M. C. Zhou, “Agent-oriented cooperative smart objects: From IoT system design to implementation,” IEEE Trans. Syst. Man Cybernet.:Syst., vol. 48, no. 11, pp. 1939–1956, Nov. 2018. doi: 10.1109/TSMC.2017.2780618
    [21]
    M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward cloud computing QoS architecture: Analysis of cloud systems and cloud services,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017. doi: 10.1109/JAS.2017.7510313
    [22]
    J. M. Garibaldi, “The need for fuzzy AI,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 3, pp. 610–622, May 2019. doi: 10.1109/JAS.2019.1911465
    [23]
    M. Ghahramani, Y. Qiao, M. C. Zhou, A. O’Hagan, and J. Sweeney, “AI-based modeling and data-driven evaluation for smart manufacturing processes,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1026–1037, Jul. 2020. doi: 10.1109/JAS.2020.1003114
    [24]
    X. Yang, L. Shu, J. N. Chen, M. A. Ferrag, J. Wu, E. Nurellari, and K. Huang, “A survey on smart agriculture: Development modes, technologies, and security and privacy challenges,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 273–302, Feb. 2021. doi: 10.1109/JAS.2020.1003536
    [25]
    S. Wolfert, L. Ge, C. Verdouw, and M. J. Bogaardt, “Big data in smart farming–a review,” Agr. Syst., vol. 153, pp. 69–80, May 2017. doi: 10.1016/j.agsy.2017.01.023
    [26]
    L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Comp. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010. doi: 10.1016/j.comnet.2010.05.010
    [27]
    J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (IoT): A vision, architectural elements, and future directions,” Future Generat. Comp. Syst., vol. 29, no. 7, pp. 1645–1660, Sept. 2013. doi: 10.1016/j.future.2013.01.010
    [28]
    A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of things: A survey on enabling technologies, protocols, and applications,” IEEE Commun. Surv. Tutor., vol. 17, no. 4, pp. 2347–2376, Jun. 2015. doi: 10.1109/COMST.2015.2444095
    [29]
    J. Lin, W. Yu, N. Zhang, X. Y. Yang, H. L. Zhang, and W. Zhao, “A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications,” IEEE Int. Things J., vol. 4, no. 5, pp. 1125–1142, Oct. 2017. doi: 10.1109/JIOT.2017.2683200
    [30]
    I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Comp. Netw., vol. 38, no. 4, pp. 393–422, Mar. 2002. doi: 10.1016/S1389-1286(01)00302-4
    [31]
    R. Want, “An introduction to RFID technology,” IEEE Pervas. Comput., vol. 5, no. 1, pp. 25–33, Feb. 2006. doi: 10.1109/MPRV.2006.2
    [32]
    L. R. Williams, D. R. Fox, G. J. Bishop-Hurley, and D. L. Swain, “Use of radio frequency identification (RFID) technology to record grazing beef cattle water point use,” Comp. Electron. Agric., vol. 156, pp. 193–202, Jan. 2019. doi: 10.1016/j.compag.2018.11.025
    [33]
    F. Tian, “An agri-food supply chain traceability system for china based on RFID & blockchain technology,” in Proc. 13th Int. Conf. Service Systems and Service Management, Kunming, China, 2016, pp. 1–6.
    [34]
    Aqeel-ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, “A review of wireless sensors and networks’ applications in agriculture,” Comp. Stand. Inter., vol. 36, no. 2, pp. 263–270, Feb. 2014. doi: 10.1016/j.csi.2011.03.004
    [35]
    C. Goumopoulos, B. O'Flynn, and A. Kameas, “Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support,” Comp. Electron. Agric., vol. 105, pp. 20–33, Jul. 2014. doi: 10.1016/j.compag.2014.03.012
    [36]
    J. Muangprathub, N. Boonnam, S. Kajornkasirat, N. Lekbangpong, A. Wanichsombat, and P. Nillaor, “IoT and agriculture data analysis for smart farm,” Comp. Electron. Agric., vol. 156, pp. 467–474, Jan. 2019. doi: 10.1016/j.compag.2018.12.011
    [37]
    I. F. Akyildiz and E. P. Stuntebeck, “Wireless underground sensor networks: Research challenges,” Ad Hoc Netw., vol. 4, no. 6, pp. 669–686, Nov. 2006. doi: 10.1016/j.adhoc.2006.04.003
    [38]
    M. Jouhari, K. Ibrahimi, H. Tembine, and J. Ben-Othman, “Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and internet of underwater things,” IEEE Access, vol. 7, pp. 96879–96899, Jul. 2019. doi: 10.1109/ACCESS.2019.2928876
    [39]
    S. AlZu'bi, B. Hawashin, M. Mujahed, Y. Jararweh, and B. B. Gupta, “An efficient employment of internet of multimedia things in smart and future agriculture,” Multimed. Tools Appl., vol. 78, no. 20, pp. 29581–29605, 2019. doi: 10.1007/s11042-019-7367-0
    [40]
    Y. H. Sun, W. M. Ding, L. Shu, K. Huang, K. L. Li, Y. Zhang, and Z. Q. Huo, “When mobile crowd sensing meets smart agriculture: Poster,” in Proc. ACM Turing Celebration Conf.-China, Chengdu, China, 2019, pp. 1–2.
    [41]
    “Reach,” [Online]. Available: https://www.altiuas.com/reach/. Accessed on: Mar. 24, 2020.
    [42]
    “Rx60,” [Online]. Available: https://www.ageagle.com/drones. Accessed on: Mar. 24, 2020.
    [43]
    “Matrice600,” [Online]. Available: https://www.dji.com/matrice600-pro. Accessed on: Mar. 24, 2020.
    [44]
    OmniTM AG,” [Online]. Available: https://sentera.com/wp-content/uploads/2016/10/Omni_Ag_Lit4051A_FINAL.pdf. Accessed on: Mar. 24, 2020.
    [45]
    “eBee-sq,” [Online]. Available: https://www.sensefly.com/drone/ebee-sq-agriculture-drone/. Accessed on: Mar. 24, 2020.
    [46]
    “Thea-140-hybrid-pro,” [Online]. Available: https://www.foxtechfpv.com/thea-140-hybrid-pro-industrial-drone.html. Accessed on: Mar. 24, 2020.
    [47]
    “Ascend,” [Online]. Available: https://www.altiuas.com/ascend/. Accessed on: Mar. 24, 2020.
    [48]
    “DJI-T16,” [Online]. Available: https://www.dji.com/t16/info. Accessed on: Mar. 24, 2020.
    [49]
    T. A. Khoa, M. M. Man, T. Y. Nguyen, V. Nguyen, and N. H. Nam, “Smart agriculture using IoT multi-sensors: A novel watering management system,” J. Sens. Actuator Netw., vol. 8, no. 3, Article No. 45, Aug. 2019. doi: 10.3390/jsan8030045
    [50]
    S. B. Biswas and M. T. Iqbal, “Solar water pumping system control using a low cost ESP32 microcontroller,” in Proc. IEEE Canadian Conf. Electrical & Computer Engineering, Quebec City, QC, Canada, 2018, pp. 1–5.
    [51]
    S. Bhowmick, B. Biswas, M. Biswas, A. Dey, S. Roy, and S. K. Sarkar, “Application of IoT-enabled smart agriculture in vertical farming,” in Advances in Communication, Devices and Networking. Singapore: Springer, 2019, pp. 521–528.
    [52]
    “Arduino,” [Online]. Available: https://www.arduino.cc/. Accessed on: Mar. 24, 2020.
    [53]
    D. O. Shirsath, P. Kamble, R. Mane, A. Kolap, and R. S. More, “IoT based smart greenhouse automation using arduino,” Int. J. Innov. Res. Comp. Sci. Technol., vol. 5, no. 2, pp. 234–8, Mar. 2017. doi: 10.21276/ijircst.2017.5.2.4
    [54]
    “Arduino,” [Online]. Available: https://www.raspberrypi.org. Accessed on: Mar. 24, 2020.
    [55]
    M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using deep neural networks,” Comp. Electron. Agric., vol. 155, pp. 473–486, Dec. 2018. doi: 10.1016/j.compag.2018.10.015
    [56]
    Espressif Systems, “Esp32 datasheet,” IotYbased microcontroller, Article No. 2017.
    [57]
    “Intel Edison board support package-user guide,” [Online]. Available: https://www.intel.com/content/www/us/en/support/articles/000005616/boards-and-kits.html. Accessed on: Mar. 24, 2020.
    [58]
    “Beagleboard,” [Online]. Available: https://beagleboard.org/. Accessed on: Mar. 24, 2020.
    [59]
    T. A. A. Ali, V. Choksi, and M. B. Potdar, “Precision agriculture monitoring system using green internet of things (G-IoT),” in Proc. 2nd Int. Conf. Trends in Electronics and Informatics, Tirunelveli, India, 2018, pp. 481–487.
    [60]
    D. J. Mulla, “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps,” Biosyst. Eng., vol. 114, no. 4, pp. 358–371, Apr. 2013. doi: 10.1016/j.biosystemseng.2012.08.009
    [61]
    C. H. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: A review,” Precision Agric., vol. 13, no. 6, pp. 693–712, Dec. 2012. doi: 10.1007/s11119-012-9274-5
    [62]
    K. Matsumura, “Unmanned aerial vehicle (UAV) for fertilizer management in grassland of Hokkaido, Japan,” in Unmanned Aerial Vehicle: Applications in Agriculture and Environment. Switzerland: Springer, 2020, pp. 39–50.
    [63]
    J. Kurihara, T. Ishida, and Y. Takahashi, “Unmanned aerial vehicle (UAV)-based hyperspectral imaging system for precision agriculture and forest management,” in Unmanned Aerial Vehicle: Applications in Agriculture and Environment. Switzerland: Springer, 2020, pp. 25–38.
    [64]
    F. Furukawa, K. Maruyama, Y. K. Saito, and M. Kaneko, “Corn height estimation using UAV for yield prediction and crop monitoring,” in Unmanned Aerial Vehicle: Applications in Agriculture and Environment. Switzerland: Springer, 2020, pp. 51–69.
    [65]
    J. M. Peña, J. Torres-Sánchez, A. I. de Castro, M. Kelly, and F. López-Granados, “Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images,” PLoS ONE, vol. 8, no. 10, Article No. e77151, Oct. 2013. doi: 10.1371/journal.pone.0077151
    [66]
    D. Vasisht, Z. Kapetanovic, J. H. Won, X. X. Jin, R. Chandra, A. Kapoor, S. Sinha, M. Sudarshan, and S. Stratman, “FarmBeats: An IoT platform for data-driven agriculture,” in Proc. 14th USENIX Symp. Networked Systems Design and Implementation, Boston, MA, United States, 2017, pp. 515–529.
    [67]
    A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck, F. Fleckenstein, A. Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes, A. Milioto, D. Nardi, S. Nardi, J. Pfeifer, M. Popovic, C. Potena, C. Pradalier, E. Rothacker-Feder, I. Sa, A. Schaefer, R. Siegwart, C. Stachniss, A. Walter, W. Winterhalter, X. L. Wu, and J. Nieto, “Building an aerial-ground robotics system for precision farming: An adaptable solution,” IEEE Rob. Automat. Mag., 2020. DOI: 10.1109/MRA.2020.3012492
    [68]
    F. A. A. Cheein and R. Carelli, “Agricultural robotics: Unmanned robotic service units in agricultural tasks,” IEEE Ind. Electron. Mag., vol. 7, no. 3, pp. 48–58, Sept. 2013. doi: 10.1109/MIE.2013.2252957
    [69]
    J. Barnett, M. Duke, C. K. Au, and S. H. Lim, “Work distribution of multiple cartesian robot arms for kiwifruit harvesting,” Comp. Electron. Agric., vol. 169, Article No. 105202, Feb. 2020. doi: 10.1016/j.compag.2019.105202
    [70]
    B. L. Steward, J. Y. Gai, and L. Tang, “The use of agricultural robots in weed management and control,” in Robotics and Automation for Improving Agriculture. Cambridge, UK: Burleigh Dodds Science Publishing, 2019, pp. 1–25.
    [71]
    P. Gonzalez-de-Santos, A. Ribeiro, C. Fernandez-Quintanilla, F. Lopez-Granados, M. Brandstoetter, S. Tomic, S. Pedrazzi, A. Peruzzi, G. Pajares, G. Kaplanis, M. Perez-Ruiz, C. Valero, J. del Cerro, M. Vieri, G. Rabatel, and B. Debilde, “Fleets of robots for environmentally-safe pest control in agriculture,” Precision Agric., vol. 18, no. 4, pp. 574–614, Aug. 2017. doi: 10.1007/s11119-016-9476-3
    [72]
    G. Q. Ren, T. Lin, Y. B. Ying, G. Chowdhary, and K. C. Ting, “Agricultural robotics research applicable to poultry production: A review,” Comp. Electron. Agric., vol. 169, Article No. 105216, Feb. 2020. doi: 10.1016/j.compag.2020.105216
    [73]
    “IEEE-standards,” [Online]. Available: https://standards.ieee.org/. Accessed on: Mar. 24, 2020.
    [74]
    C. W. Badenhop, S. R. Graham, B. W. Ramsey, B. E. Mullins, and L. O. Mailloux, “The Z-Wave routing protocol and its security implications,” Comp. Secur., vol. 68, pp. 112–129, Jul. 2017. doi: 10.1016/j.cose.2017.04.004
    [75]
    R. Faragher and R. Harle, “An analysis of the accuracy of bluetooth low energy for indoor positioning applications,” in Proc. 27th Int. Technical Meeting of the Satellite Division of the Institute of Navigation, Tampa, Florida, USA, 2014, pp. 201–210.
    [76]
    “6lowpan,” [Online]. Available: https://datatracker.ietf.org/wg/6lowpan/about/. Accessed on: Mar. 24, 2020.
    [77]
    R. Want, “Near field communication,” IEEE Pervasive Comp., vol. 10, no. 3, pp. 4–7, Jul. 2011. doi: 10.1109/MPRV.2011.55
    [78]
    “3gpp,” [Online]. Available: https://www.3gpp.org/. Accessed on: Mar. 24, 2020.
    [79]
    M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Y. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, Apr. 2017. doi: 10.1109/JSAC.2017.2692307
    [80]
    C. Gomez, J. C. Veras, R. Vidal, L. Casals, and J. Paradells, “A sigfox energy consumption model,” Sensors, vol. 19, no. 3, Article No. 681, Feb. 2019. doi: 10.3390/s19030681
    [81]
    K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of LPWAN technologies for large-scale IoT deployment,” ICT Exp., vol. 5, no. 1, pp. 1–7, Mar. 2019. doi: 10.1016/j.icte.2017.12.005
    [82]
    “Lora,” [Online]. Available: https://lora-alliance.org/. Accessed on: Mar. 24, 2020.
    [83]
    M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for internet of things: A survey,” IEEE Int. Things J., vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900
    [84]
    A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “IoT middleware: A survey on issues and enabling technologies,” IEEE Int. Things J., vol. 4, no. 1, pp. 1–20, Feb. 2017.
    [85]
    E. Symeonaki, K. Arvanitis, and D. Piromalis, “A context-aware middleware cloud approach for integrating precision farming facilities into the IoT toward agriculture 4.0,” Appl. Sci., vol. 10, no. 3, Article No. 813, Jan. 2020. doi: 10.3390/app10030813
    [86]
    R. Dobrescu, D. Merezeanu, and S. Mocanu, “Context-aware control and monitoring system with IoT and cloud support,” Comp. Electron. Agric., vol. 160, pp. 91–99, May 2019. doi: 10.1016/j.compag.2019.03.005
    [87]
    K. Furdik, F. Pramudianto, M. Ahlsén, P. Rosengren, P. Kool, Z. Y. Song, P. Brizzi, M. Paralic, and A. Schneider, “Food traceability chain supported by the Ebbits IoT middleware,” in Dynamics in Logistics. Switzerland: Springer, 2016, pp. 343–353.
    [88]
    R. Gaire, L. Lefort, M. Compton, G. Falzon, D. Lamb, and K. Taylor, “Demonstration: Semantic web enabled smart farm with GSN,” in Proc. 12th Int. Semantic Web Conf., Sydney, Australia, 2013, pp. 41–44.
    [89]
    G. Kousiouris, S. Tsarsitalidis, E. Psomakelis, S. Koloniaris, C. Bardaki, K. Tserpes, M. Nikolaidou, and D. Anagnostopoulos, “A microservice-based framework for integrating IoT management platforms, semantic and AI services for supply chain management,” ICT Exp., vol. 5, no. 2, pp. 141–145, Jun. 2019. doi: 10.1016/j.icte.2019.04.002
    [90]
    M. Muñoz, J. D. Gil, L. Roca, F. Rodríguez, and M. Berenguel, “An IoT architecture for water resource management in agroindustrial environments: A case study in Almería (Spain),” Sensors, vol. 20, no. 3, Article No. 596, Jan. 2020. doi: 10.3390/s20030596
    [91]
    P. P. Jayaraman, D. Palmer, A. Zaslavsky, A. Salehi, and D. Georgakopoulos, “Addressing information processing needs of digital agriculture with openiot platform,” in Interoperability and Open-Source Solutions for the Internet of Things. Switzerland: Springer, 2015, pp. 137–152.
    [92]
    “LinkSmart,” [Online]. Available: https://linksmart.eu/. Accessed on: Mar. 24, 2020.
    [93]
    “GSN,” [Online]. Available: https://www.epfl.ch/labs/lsir/global-sensor-networks/. Accessed on: Mar. 24, 2020.
    [94]
    “Node-red,” [Online]. Available: https://nodered.org/. Accessed on: Mar. 24, 2020.
    [95]
    V. Araujo, K. Mitra, S. Saguna, and C. Åhlund, “Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities,” J. Parallel Distrib. Comp., vol. 132, pp. 250–261, Oct. 2019. doi: 10.1016/j.jpdc.2018.12.010
    [96]
    “Openiot,” [Online]. Available: http://www.openiot.eu/. Accessed on: Mar. 24, 2020.
    [97]
    A. Botta, W. De Donato, V. Persico, and A. Pescape, “Integration of cloud computing and internet of things: A survey,” Future Generat. Comp. Syst., vol. 56, pp. 684–700, Mar. 2016. doi: 10.1016/j.future.2015.09.021
    [98]
    M. S. Mekala and P. Viswanathan, “CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system,” Measurement, vol. 134, pp. 236–244, Feb. 2019. doi: 10.1016/j.measurement.2018.10.072
    [99]
    S. Singh, I. Chana, and R. Buyya, “Agri-info: Cloud based autonomic system for delivering agriculture as a service,” Int. Things, vol. 9, Article No. 100131, Mar. 2020. doi: 10.1016/j.iot.2019.100131
    [100]
    F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proc. 1st Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 2012, pp. 13–16.
    [101]
    M. A. Zamora-Izquierdo, J. Santa, J. A. Martínez, V. Martínez, and A. F. Skarmeta, “Smart farming IoT platform based on edge and cloud computing,” Biosyst. Eng., vol. 177, pp. 4–17, Jan. 2019. doi: 10.1016/j.biosystemseng.2018.10.014
    [102]
    R. Y. Chen, “An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing,” Food Control, vol. 71, pp. 124–136, Jan. 2017. doi: 10.1016/j.foodcont.2016.06.042
    [103]
    X. W. Chen, H. H. Wang, and B. Tian, “Multidimensional agro-economic model with soft-IoT framework,” Soft Comp., vol. 24, pp. 12187–12196, Aug. 2020. doi: 10.1007/s00500-019-04657-1
    [104]
    F. H. Tseng, H. H. Cho, and H. T. Wu, “Applying big data for intelligent agriculture-based crop selection analysis,” IEEE Access, vol. 7, pp. 116965–116974, Aug. 2019.
    [105]
    L. Lambrinos, “Internet of things in agriculture: A decision support system for precision farming,” in Proc. IEEE Int. Conf. Dependable, Autonomic and Secure Computing, Int. Conf. Pervasive Intelligence and Computing, Int. Conf. Cloud and Big Data Computing, Int. Conf. Cyber Science and Technology Congress, Fukuoka, Japan, 2019, pp. 889–892.
    [106]
    U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “Agriprediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comp. Electron. Agric., vol. 161, pp. 202–213, Jun. 2019. doi: 10.1016/j.compag.2018.10.010
    [107]
    J. H. Ruan, H. Jiang, X. Y. Li, Y. Shi, F. T. S. Chan, and W. Z. Rao, “A granular GA-SVM predictor for big data in agricultural cyber-physical systems,” IEEE Trans. Ind. Inform., vol. 15, no. 12, pp. 6510–6521, Apr. 2019. doi: 10.1109/TII.2019.2914158
    [108]
    A. L. Diedrichs, F. Bromberg, D. Dujovne, K. Brun-Laguna, and T. Watteyne, “Prediction of frost events using machine learning and IoT sensing devices,” IEEE Int. Things J., vol. 5, no. 6, pp. 4589–4597, Dec. 2018. doi: 10.1109/JIOT.2018.2867333
    [109]
    K. Jha, A. Doshi, P. Patel, and M. Shah, “A comprehensive review on automation in agriculture using artificial intelligence,” Artif. Intell. Agric., vol. 2, pp. 1–12, Jun. 2019.
    [110]
    A. Rajput and V. B. Kumaravelu, “Fuzzy logic-based distributed clustering protocol to improve energy efficiency and stability of wireless smart sensor networks for farmland monitoring systems,” Int. J. Commun. Syst., vol. 33, no. 4, Article No. e4239, Mar. 2020. doi: 10.1002/dac.4239
    [111]
    P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “ONOS: Towards an open, distributed SDN OS,” in Proc. 3rd Workshop on Hot Topics in Software Defined Networking, Chicago, Illinois, USA, 2014, pp. 1–6.
    [112]
    “OPENFV,” [Online]. Available: https://www.opnfv.org/. Accessed on: Mar. 24, 2020.
    [113]
    Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of OpenDaylight SDN controller,” in Proc. 20th IEEE Int. Conf. Parallel and Distributed Systems, Hsinchu, Taiwan, China, 2014, pp. 671–676.
    [114]
    “Tungsten,” [Online]. Available: https://tungsten.io/. Accessed on: Mar. 24, 2020.
    [115]
    “Nox,” [Online]. Available: https://github.com/noxrepo/. Accessed on: Mar. 24, 2020.
    [116]
    F. Tomonori, “Introduction to Ryu SDN framework,” Open Networking Summit, pp. 1–14, 2013.
    [117]
    “Floodlight,” [Online]. Available: http://www.projectfloodlight.org/floodlight/. Accessed on: Mar. 24, 2020.
    [118]
    “Lighty,” [Online]. Available: https://lighty.io/. Accessed on: Mar. 24, 2020.
    [119]
    “Cherry,” [Online]. Available: https://github.com/superkkt/cherry/. Accessed on: Mar. 24, 2020.
    [120]
    “Openbaton,” [Online]. Available: https://openbaton.github.io/. Accessed on: Mar. 24, 2020.
    [121]
    A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Comp. Electron. Agric., vol. 147, pp. 70–90, Apr. 2018. doi: 10.1016/j.compag.2018.02.016
    [122]
    L. Liu, R. J. Wang, C. J. Xie, P. Yang, F. Y. Wang, S. Sudirman, and W. C. Liu, “PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification,” IEEE Access, vol. 7, pp. 45301–45312, Apr. 2019. doi: 10.1109/ACCESS.2019.2909522
    [123]
    F. Y. Bu and X. Wang, “A smart agriculture IoT system based on deep reinforcement learning,” Future Generat. Comp. Syst., vol. 99, pp. 500–507, Oct. 2019. doi: 10.1016/j.future.2019.04.041
    [124]
    D. R. Vincent, N. Deepa, D. Elavarasan, K. Srinivasan, S. H. Chauhdary, and C. Iwendi, “Sensors driven AI-based agriculture recommendation model for assessing land suitability,” Sensors, vol. 19, no. 17, Article No. 3667, Aug. 2019. doi: 10.3390/s19173667
    [125]
    P. Jiang, Y. H. Chen, B. Liu, D. J. He, and C. Q. Liang, “Real-time detection of apple leaf diseases using deep learning approach based on improved convolutional neural networks,” IEEE Access, vol. 7, pp. 59069–59080, May 2019. doi: 10.1109/ACCESS.2019.2914929
    [126]
    B. A. Ashqar, B. S. Abu-Nasser, and S. S. Abu-Naser, “Plant seedlings classification using deep learning,” Int. J. Academic Information Systems Research, vol. 3, no. 1, pp. 7–14, 2019.
    [127]
    D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015. doi: 10.1109/JPROC.2014.2371999
    [128]
    Y. Li and M. Chen, “Software-defined network function virtualization: A survey,” IEEE Access, vol. 3, pp. 2542–2553, Dec. 2015.
    [129]
    T. Huang, S. Y. Yan, F. Yang, T. Pan, and J. Liu, “Building SDN-based agricultural vehicular sensor networks based on extended open vSwitch,” Sensors, vol. 16, no. 1, Article No. 108, Jan. 2016. doi: 10.3390/s16010108
    [130]
    T. Huang, S. Y. Yan, F. Yang, and J. Liu, “Multi-domain SDN survivability for agricultural wireless sensor networks,” Sensors, vol. 16, no. 11, Article No. 1861, Nov. 2016. doi: 10.3390/s16111861
    [131]
    A. A. Ismail, H. S. Hamza, and A. M. Kotb, “Performance evaluation of open source IoT platforms,” in Proc. IEEE Global Conf. Internet of Things, Alexandria, Egypt, 2018, pp. 1–5.
    [132]
    A. L. Bustamante, M. A. Patricio, and J. M. Molina, “Thinger.io: An open source platform for deploying data fusion applications in IoT environments, “Thinger.io: An open source platform for deploying data fusion applications in IoT environments,” Sensors, vol. 19, no. 5, Article No. 1044, Mar. 2019. doi: 10.3390/s19051044
    [133]
    “Murano,” [Online]. Available: https://exosite.com/iot-platform/. Accessed on: Mar. 24, 2020.
    [134]
    M. A. G. Maureira, D. Oldenhof, and L. Teernstra, “ThingSpeak-an API and web service for the internet of things,” World Wide Web, Article No. 2011.
    [135]
    “Mainflux,” [Online]. Available: https://www.mainflux.com/. Accessed on: Mar. 24, 2020.
    [136]
    T. B. Dang, M. H. Tran, D. T. Le, and H. Choo, “On evaluating IoTivity cloud platform,” in Proc. Int. Conf. Computational Science and its Applications. Trieste, Italy: Springer, 2017, pp. 137–147.
    [137]
    “KAA,” [Online]. Available: https://www.kaaproject.org/. Accessed on: Mar. 24, 2020.
    [138]
    G. Munasinghe, “An introduction to WSO2 IoT architecture,” WSO2, Article No. 2017.
    [139]
    “Sitewhere,” [Online]. Available: https://sitewhere.io/. Accessed on: Mar. 24, 2020.
    [140]
    “Devicehive,” [Online]. Available: https://devicehive.com/. Accessed on: Mar. 24, 2020.
    [141]
    A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha, “Software-defined network (SDN) data plane security: Issues, solutions, and future directions,” in Handbook of Computer Networks and Cyber Security. Switzerland: Springer, 2020, pp. 341–387.
    [142]
    D. Liu, X. Cao, C. W. Huang, and L. L. Ji, “Intelligent agriculture greenhouse environment monitoring system based on IoT technology,” in Proc. Int. Conf. Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 2015, pp. 487–490.
    [143]
    A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Information, vol. 10, no. 11, Article No. 348, Nov. 2019.
    [144]
    R. Morais, N. Silva, J. Mendes, T. Adão, L. Pádua, J. López-Riquelme, N. Pavón-Pulido, J. J. Sousa, and E. Peres, “Mysense: A comprehensive data management environment to improve precision agriculture practices,” Comp. Electron. Agric., vol. 162, pp. 882–894, Jul. 2019.
    [145]
    P. Phupattanasilp and S. R. Tong, “Augmented reality in the integrative internet of things (AR-IoT): Application for precision farming,” Sustainability, vol. 11, no. 9, Article No. 2658, May 2019. doi: 10.3390/su11092658
    [146]
    S. N. Daskalakis, G. Goussetis, S. D. Assimonis, M. M. Tentzeris, and A. Georgiadis, “A UW backscatter-morse-leaf sensor for low-power agricultural wireless sensor networks,” IEEE Sens. J., vol. 18, no. 19, pp. 7889–7898, Jul. 2018. doi: 10.1109/JSEN.2018.2861431
    [147]
    A. Zgank, “Bee swarm activity acoustic classification for an IoT-based farm service,” Sensors, vol. 20, no. 1, Article No. 21, Dec. 2019. doi: 10.3390/s20010021
    [148]
    F. Maroto-Molina, J. Navarro-García, K. Príncipe-Aguirre, I. Gómez-Maqueda, J. E. Guerrero-Ginel, A. Garrido-Varo, and D. C. Pérez-Marín, “A low-cost IoT-based system to monitor the location of a whole herd,” Sensors, vol. 19, no. 10, Article No. 2298, May 2019. doi: 10.3390/s19102298
    [149]
    I. Sittón-Candanedo, R. S. Alonso, J. M. Corchado, S. Rodríguez-González, and R. Casado-Vara, “A review of edge computing reference architectures and a new global edge proposal,” Future Generat. Comp. Syst., vol. 99, pp. 278–294, Oct. 2019. doi: 10.1016/j.future.2019.04.016
    [150]
    R. S. Alonso, I. Sittón-Candanedo, Ó. García, J. Prieto, and S. Rodríguez-González, “An intelligent edge-IoT platform for monitoring livestock and crops in a dairy farming scenario,” Ad Hoc Netw., vol. 98, Article No. 102047, Mar. 2020. doi: 10.1016/j.adhoc.2019.102047
    [151]
    A. N. Harun, N. Mohamed, R. Ahmad, A. R. A. Rahim, and N. N. Ani, “Improved internet of things (IoT) monitoring system for growth optimization of Brassica chinensis,” Comp. Electron. Agric., vol. 164, Article No. 104836, Sept. 2019. doi: 10.1016/j.compag.2019.05.045
    [152]
    M. T. Lazarescu, “Design of a WSN platform for long-term environmental monitoring for IoT applications,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, no. 1, pp. 45–54, Mar. 2013. doi: 10.1109/JETCAS.2013.2243032
    [153]
    G. R. Mendez, M. A. M. Yunus, and S. C. Mukhopadhyay, “A WiFi based smart wireless sensor network for monitoring an agricultural environment,” in Proc. IEEE Int. Instrumentation and Measurement Technology Conf. Proc., Graz, Austria, 2012, pp. 2640–2645.
    [154]
    C. Hirsch, E. Bartocci, and R. Grosu, “Capacitive soil moisture sensor node for IoT in agriculture and home,” in Proc. IEEE 23rd Int. Symp. Consumer Technologies, Ancona, Italy, 2019, pp. 97–102.
    [155]
    X. Z. Lai, T. Yang, Z. T. Wang, and P. Chen, “IoT implementation of Kalman filter to improve accuracy of air quality monitoring and prediction,” Applied Sciences, vol. 9, no. 9, Article No. 1831, May 2019. doi: 10.3390/app9091831
    [156]
    N. Gondchawar and R. S. Kawitkar, “IoT based smart agriculture,” Int. J. Adv. Res. Comp. Commun. Eng., vol. 5, no. 6, pp. 838–842, Jun. 2016.
    [157]
    D. Popescu, F. Stoican, G. Stamatescu, L. Ichim, and C. Dragana, “Advanced UAV-WSN system for intelligent monitoring in precision agriculture,” Sensors, vol. 20, no. 3, Article No. 817, Feb. 2020. doi: 10.3390/s20030817
    [158]
    C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, Article No. 216, Apr. 2019. doi: 10.3390/agronomy9050216
    [159]
    T. H. Chen, D. Eager, and D. Makaroff, “Efficient image transmission using LoRa technology in agricultural monitoring IoT systems,” in Proc. Int. Conf. Internet of Things and IEEE Green Computing and Communications and IEEE Cyber Physical and Social Computing and IEEE Smart Data, Atlanta, GA, USA, 2019, pp. 937–944.
    [160]
    N. Ahmed, D. De, and I. Hussain, “Internet of things (IoT) for smart precision agriculture and farming in rural areas,” IEEE Int. Things J., vol. 5, no. 6, pp. 4890–4899, Dec. 2018.
    [161]
    A. Muminov, D. Na, C. Lee, H. K. Kang, and H. S. Jeon, “Modern virtual fencing application: Monitoring and controlling behavior of goats using GPS collars and warning signals,” Sensors, vol. 19, no. 7, Article No. 1598, Apr. 2019. doi: 10.3390/s19071598
    [162]
    I. Potamitis, I. Rigakis, N. A. Tatlas, and S. Potirakis, “In-vivo vibroacoustic surveillance of trees in the context of the IoT,” Sensors, vol. 19, no. 6, Article No. 1366, Mar. 2019. doi: 10.3390/s19061366
    [163]
    S. B. Liu, L. Q. Guo, H. Webb, X. Ya, and X. Chang, “Internet of things monitoring system of modern eco-agriculture based on cloud computing,” IEEE Access, vol. 7, pp. 37050–37058, Mar. 2019. doi: 10.1109/ACCESS.2019.2903720
    [164]
    M. Roopaei, P. Rad, and K. K. R. Choo, “Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging,” IEEE Cloud Comp., vol. 4, no. 1, pp. 10–15, Mar. 2017. doi: 10.1109/MCC.2017.5
    [165]
    C. Kamienski, J. P. Soininen, M. Taumberger, R. Dantas, A. Toscano, T. S. Cinotti, R. F. Maia, and A. T. Neto, “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors, vol. 19, no. 2, Article No. 276, Jan. 2019. doi: 10.3390/s19020276
    [166]
    N. K. Nawandar and V. R. Satpute, “IoT based low cost and intelligent module for smart irrigation system,” Comp. Electron. Agric., vol. 162, pp. 979–990, Jul. 2019. doi: 10.1016/j.compag.2019.05.027
    [167]
    L. M. Fernández-Ahumada, J. Ramírez-Faz, M. Torres-Romero, and R. López-Luque, “Proposal for the design of monitoring and operating irrigation networks based on IoT, cloud computing and free hardware technologies,” Sensors, vol. 19, no. 10, Article No. 2318, May 2019. doi: 10.3390/s19102318
    [168]
    U. Yaqub, A. Al-Nasser, and T. Sheltami, “Implementation of a hybrid wind-solar desalination plant from an internet of things (IoT) perspective on a network simulation tool,” Appl. Comput. Inform., vol. 15, no. 1, pp. 7–11, Jan. 2019. doi: 10.1016/j.aci.2018.03.001
    [169]
    C. M. Angelopoulos, G. Filios, S. Nikoletseas, and T. P. Raptis, “Keeping data at the edge of smart irrigation networks: A case study in strawberry greenhouses,” Comp. Netw., vol. 167, Article No. 107039, Feb. 2020. doi: 10.1016/j.comnet.2019.107039
    [170]
    A. Goap, D. Sharma, A. K. Shukla, and C. R. Krishna, “An IoT based smart irrigation management system using machine learning and open source technologies,” Comp. Electron. Agric., vol. 155, pp. 41–49, Dec. 2018. doi: 10.1016/j.compag.2018.09.040
    [171]
    R. N. Rao and B. Sridhar, “IoT based smart crop-field monitoring and automation irrigation system,” in Proc. 2nd Int. Conf. Inventive Systems and Control, Coimbatore, India, 2018, pp. 478–483.
    [172]
    B. Keswani, A. G. Mohapatra, A. Mohanty, A. Khanna, J. J. P. C. Rodrigues, D. Gupta, and V. H. C. de Albuquerque, “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms,” Neural Comput. Appl., vol. 31, no. 1, pp. 277–292, Jan. 2019.
    [173]
    N. G. S. Campos, A. R. Rocha, R. Gondim, T. L. C. da Silva, and D. G. Gomes, “Smart & green: An internet-of-things framework for smart irrigation,” Sensors, vol. 20, no. 1, Article No. 190, Dec. 2019. doi: 10.3390/s20010190
    [174]
    G. Severino, G. D'Urso, M. Scarfato, and G. Toraldo, “The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils,” Future Generat. Comp. Syst., vol. 82, pp. 268–273, May 2018. doi: 10.1016/j.future.2017.12.058
    [175]
    G. Lavanya, C. Rani, and P. Ganeshkumar, “An automated low cost IoT based fertilizer intimation system for smart agriculture,” Sustain. Comput.:Inform. Syst., vol. 28, Article No. 100300, Dec. 2020.
    [176]
    Y. Yue, X. Cheng, D. Zhang, Y. Z. Wu, Y. Zhao, Y. Q. Chen, G. H. Fan, and Y. H. Zhang, “Deep recursive super resolution network with Laplacian Pyramid for better agricultural pest surveillance and detection,” Comp. Electron. Agric., vol. 150, pp. 26–32, Jul. 2018. doi: 10.1016/j.compag.2018.04.004
    [177]
    M. P. Arakeri, B. V. Kumar, S. Barsaiya, and H. V. Sairam, “Computer vision based robotic weed control system for precision agriculture,” in Proc. Int. Conf. Advances in Computing, Communications and Informatics, Udupi, India, 2017, pp. 1201–1205.
    [178]
    K. Huang, K. L. Li, L. Shu, and X. Yang, “Demo abstract: High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things,” in IEEE INFOCOM 2020-IEEE Conf. Computer Communications Workshops, Toronto, ON, Canada, 2020, pp. 1266–1267.
    [179]
    B. S. Faiçal, F. G. Costa, G. Pessin, J. Ueyama, H. Freitas, A. Colombo, P. H. Fini, L. Villas, F. S. Osório, P. A. Vargas, and T. Braun, “The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides,” J. Syst. Architect., vol. 60, no. 4, pp. 393–404, Apr. 2014. doi: 10.1016/j.sysarc.2014.01.004
    [180]
    P. Lottes, J. Behley, A. Milioto, and C. Stachniss, “Fully convolutional networks with sequential information for robust crop and weed detection in precision farming,” IEEE Rob. Autom. Lett., vol. 3, no. 4, pp. 2870–2877, Jun. 2018. doi: 10.1109/LRA.2018.2846289
    [181]
    H. Lee, A. Moon, K. Moon, and Y. Lee, “Disease and pest prediction IoT system in orchard: A preliminary study,” in Proc. 9th Int. Conf. Ubiquitous and Future Networks, Milan, Italy, 2017, pp. 525–527.
    [182]
    D. V. Ramane, S. S. Patil, and A. D. Shaligram, “Detection of NPK nutrients of soil using fiber optic sensor,” in Proc. Int. Journal of Research in Advent Technology, Special Issue National Conf. “ACGT 2015”, 2015, pp. 66–70.
    [183]
    X. E. Pantazi, D. Moshou, and A. A. Tamouridou, “Automated leaf disease detection in different crop species through image features analysis and one class classifiers,” Comp. Electron. Agric., vol. 156, pp. 96–104, Jan. 2019. doi: 10.1016/j.compag.2018.11.005
    [184]
    M. A. Uddin, M. Ayaz, E. H. M. Aggoune, A. Mansour, and D. Le Jeune, “Affordable broad agile farming system for rural and remote area,” IEEE Access, vol. 7, pp. 127098–127116, Aug. 2019. doi: 10.1109/ACCESS.2019.2937881
    [185]
    S. Kim, M. Lee, and C. Shin, “IoT-based strawberry disease prediction system for smart farming,” Sensors, vol. 18, no. 11, Article No. 4051, Nov. 2018. doi: 10.3390/s18114051
    [186]
    A. Kumar and G. P. Hancke, “A Zigbee-based animal health monitoring system,” IEEE Sens. J., vol. 15, no. 1, pp. 610–617, Jan. 2015. doi: 10.1109/JSEN.2014.2349073
    [187]
    F. Edwards-Murphy, M. Magno, P. M. Whelan, J. O'Halloran, and E. M. Popovici, “b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring,” Comp. Electron. Agric., vol. 124, pp. 211–219, Jun. 2016. doi: 10.1016/j.compag.2016.04.008
    [188]
    A. Khattab, S. E. D. Habib, H. Ismail, S. Zayan, Y. Fahmy, and M. M. Khairy, “An IoT-based cognitive monitoring system for early plant disease forecast,” Comp. Electron. Agric., vol. 166, Article No. 105028, Nov. 2019. doi: 10.1016/j.compag.2019.105028
    [189]
    F. Başçiftçi and K. A. Gündüz, “Identification of acidosis disease in cattle using IoT,” in Proc. 4th Int. Conf. Computer Science and Engineering, Samsun, Turkey, 2019, pp. 58–62.
    [190]
    Y. Zhao, L. Liu, C. Xie, R. Wang, F. Wang, Y. Bu, and S. Zhang, “An effective automatic system deployed in agricultural internet of things using multi-context fusion network towards crop disease recognition in the wild,” Appl. Soft Comput., vol. 89, Article No. 106128, Apr. 2020. doi: 10.1016/j.asoc.2020.106128
    [191]
    D. H. Park and J. W. Park, “Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention,” Sensors, vol. 11, no. 4, pp. 3640–3651, Mar. 2011. doi: 10.3390/s110403640
    [192]
    L. Nóbrega, A. Tavares, A. Cardoso, and P. Gonçalves, “Animal monitoring based on IoT technologies,” in Proc. IEEE IoT Vertical and Topical Summit on Agriculture-Tuscany, Tuscany, Italy, 2018, pp. 1–5.
    [193]
    A. P. Kale and S. P. Sonavane, “IoT based smart farming: Feature subset selection for optimized high-dimensional data using improved GA based approach for ELM,” Comp. Electron. Agric., vol. 161, pp. 225–232, Jun. 2019. doi: 10.1016/j.compag.2018.04.027
    [194]
    I. Sa, Z. Ge, F. Dayoub, B. Upcroft, T. Perez, and C. McCool, “Deepfruits: A fruit detection system using deep neural networks,” Sensors, vol. 16, no. 8, Article No. 1222, 2016.
    [195]
    G. C. Lin, Y. C. Tang, X. J. Zou, J. B. Cheng, and J. T. Xiong, “Fruit detection in natural environment using partial shape matching and probabilistic Hough transform,” Precision Agric., vol. 21, no. 1, pp. 160–177, Feb. 2020. doi: 10.1007/s11119-019-09662-w
    [196]
    S. K. Thangavel and M. Murthi, “A semi automated system for smart harvesting of tea leaves,” in Proc. 4th Int. Conf. Advanced Computing and Communication Systems, Coimbatore, India, 2017, pp. 1–10.
    [197]
    R. K. Megalingam, N. Vignesh, V. Sivanantham, N. Elamon, M. S. Sharathkumar, and V. Rajith, “Low cost robotic arm design for pruning and fruit harvesting in developing nations,” in Proc. 10th Int. Conf. Intelligent Systems and Control, Coimbatore, India, 2016, pp. 1–5.
    [198]
    H. W. Kang and C. Chen, “Fast implementation of real-time fruit detection in apple orchards using deep learning,” Comp. Electron. Agric., vol. 168, Article No. 105108, Jan. 2020.
    [199]
    S. H. Wan and S. Goudos, “Faster R-CNN for multi-class fruit detection using a robotic vision system,” Comp. Netw., vol. 168, Article No. 107036, Feb. 2020. doi: 10.1016/j.comnet.2019.107036
    [200]
    G. C. Lin, Y. C. Tang, X. J. Zou, J. T. Xiong, and Y. M. Fang, “Color-, depth-, and shape-based 3D fruit detection,” Precision Agric., vol. 21, no. 1, pp. 1–17, Feb. 2020. doi: 10.1007/s11119-019-09654-w
    [201]
    C. Bac, J. Hemming, and E. Van Henten, “Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper,” Computers and Electronics in Agriculture, vol. 96, pp. 148–162, 2013. doi: 10.1016/j.compag.2013.05.004
    [202]
    J. Xu, J. H. Meng, and L. J. Quackenbush, “Use of remote sensing to predict the optimal harvest date of corn,” Field Crops Res., vol. 236, pp. 1–13, Apr. 2019. doi: 10.1016/j.fcr.2019.03.003
    [203]
    K. Leng, L. B. Jin, W. Shi, and I. Van Nieuwenhuyse, “Research on agricultural products supply chain inspection system based on internet of things,” Cluster Comput., vol. 22, no. 4, pp. 8919–8927, Jul. 2019.
    [204]
    M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, “Blockchain-based traceability in agri-food supply chain management: A practical implementation,” in Proc. IoT Vertical and Topical Summit on Agriculture - Tuscany, Tuscany, Italy, 2018, pp. 1–4.
    [205]
    R. Casado-Vara, J. Prieto, F. De la Prieta, and J. M. Corchado, “How blockchain improves the supply chain: Case study alimentary supply chain,” Procedia Comp. Sci., vol. 134, pp. 393–398, Jan. 2018. doi: 10.1016/j.procs.2018.07.193
    [206]
    A. Arena, A. Bianchini, P. Perazzo, C. Vallati, and G. Dini, “BRUSCHETTA: An IoT blockchain-based framework for certifying extra virgin olive oil supply chain,” in Proc. IEEE Int. Conf. Smart Computing, Washington DC, USA, 2019, pp. 173–179.
    [207]
    L. Hang, I. Ullah, and D. H. Kim, “A secure fish farm platform based on blockchain for agriculture data integrity,” Comp. Electron. Agric., vol. 170, Article No. 105251, Mar. 2020. doi: 10.1016/j.compag.2020.105251
    [208]
    K. Gupta and N. Rakesh, “IoT-based solution for food adulteration,” in Proc. 1st Int. Conf. Smart System, Innovations and Computing, Singapore, 2018, pp. 9–18.
    [209]
    G. Rajakumar, T. A. Kumar, T. Samuel, and E. M. Kumaran, “IoT based milk monitoring system for detection of milk adulteration,” Int. J. Pure Appl. Math., vol. 118, no. 9, pp. 21–32, Jan. 2018.
    [210]
    S. Nirenjena, D. L. BalaSubramanian, and M. Monisha, “Advancement in monitoring the food supply chain management using IoT,” Int. J. Pure Appl. Math., vol. 119, no. 14, pp. 1193–1196, Jan. 2018.
    [211]
    J. Wang and H. L. Yue, “Food safety pre-warning system based on data mining for a sustainable food supply chain,” Food Control, vol. 73, pp. 223–229, Mar. 2017. doi: 10.1016/j.foodcont.2016.09.048
    [212]
    “Agrovoltaico,” [Online]. Available: https://www.remtec.energy/en/agrovoltaico/. Accessed on: Mar. 24, 2020.
    [213]
    G. Valecce, S. Strazzella, A. Radesca, and L. A. Grieco, “Solarfertigation: Internet of things architecture for smart agriculture,” in Proc. IEEE Int. Conf. Communications Workshops, Shanghai, China, 2019, pp. 1–6.
    [214]
    S. Amaducci, X. Y. Yin, and M. Colauzzi, “Agrivoltaic systems to optimise land use for electric energy production,” Appl. Energy, vol. 220, pp. 545–561, Jun. 2018. doi: 10.1016/j.apenergy.2018.03.081
    [215]
    M. Z. Kang, X. R. Fan, J. Hua, H. Y. Wang, X. J. Wang, and F. Y. Wang, “Managing traditional solar greenhouse with CPSS: A just-for-fit philosophy,” IEEE Trans. Cybernet., vol. 48, no. 12, pp. 3371–3380, Aug. 2018.
    [216]
    F. Y. Wang, “Toward a paradigm shift in social computing: The ACP approach,” IEEE Intell. Syst., vol. 22, no. 5, pp. 65–67, Oct. 2007. doi: 10.1109/MIS.2007.4338496
    [217]
    F. J. Ferrández-Pastor, J. M. García-Chamizo, M. Nieto-Hidalgo, and J. Mora-Martínez, “Precision agriculture design method using a distributed computing architecture on internet of things context,” Sensors, vol. 18, no. 6, Article No. 1731, May 2018. doi: 10.3390/s18061731
    [218]
    C. A. González-Amarillo, J. C. Corrales-Muñoz, M. Á. Mendoza-Moreno, A. G. Amarillo, A. F. Hussein, N. Arunkumar, and G. Ramirez-González, “An IoT-based traceability system for greenhouse seedling crops,” IEEE Access, vol. 6, pp. 67528–67535, Oct. 2018. doi: 10.1109/ACCESS.2018.2877293
    [219]
    K. E. Lakshmiprabha and C. Govindaraju, “Hydroponic-based smart irrigation system using internet of things,” Int. J. Commun. Syst., 2019. DOI: 10.1002/dac.4071
    [220]
    C. Cambra, S. Sendra, J. Lloret, and R. Lacuesta, “Smart system for bicarbonate control in irrigation for hydroponic precision farming,” Sensors, vol. 18, no. 5, Article No. 1333, Apr. 2018. doi: 10.3390/s18051333
    [221]
    F. Francis, P. L. Vishnu, M. Jha, and B. Rajaram, “IoT-based automated aeroponics system,” in Intelligent Embedded Systems. Singapore: Springer, 2018, pp. 337–345.
    [222]
    I. A. Lakhiar, J. M. Gao, T. N. Syed, F. A. Chandio, M. H. Tunio, F. Ahmad, and K. A. Solangi, “Overview of the aeroponic agriculture-an emerging technology for global food security,” Int. J. Agric. Biol. Eng., vol. 13, no. 1, pp. 1–10, Jan. 2020.
    [223]
    A. Graber and R. Junge, “Aquaponic systems: Nutrient recycling from fish wastewater by vegetable production,” Desalination, vol. 246, no. 1–3, pp. 147–156, Sept. 2009. doi: 10.1016/j.desal.2008.03.048
    [224]
    C. Lee and Y. J. Wang, “Development of a cloud-based IoT monitoring system for fish metabolism and activity in aquaponics,” Aquacult. Eng., vol. 90, Article No. 102067, Aug. 2020. doi: 10.1016/j.aquaeng.2020.102067
    [225]
    I. Haris, A. Fasching, L. Punzenberger, and R. Grosu, “CPS/IoT ecosystem: Indoor vertical farming system,” in Proc. IEEE 23rd Int. Symp. Consumer Technologies, Ancona, Italy, 2019, pp. 47–52.
    [226]
    M. G. Selvaraj, M. E. Montoya-P, J. Atanbori, A. P. French, and T. Pridmore, “A low-cost aeroponic phenotyping system for storage root development: Unravelling the below-ground secrets of cassava (Manihot esculenta),” Plant Methods, vol. 15, no. 1, Article No. 131, Nov. 2019. doi: 10.1186/s13007-019-0517-6
    [227]
    C. Yoon, M. Huh, S. G. Kang, J. Park, and C. Lee, “Implement smart farm with IoT technology,” in Proc. 20th Int. Conf. Advanced Communication Technology, Chuncheon-si Gangwon-do, Korea (South), 2018, pp. 749–752.
    [228]
    C. Cambra, S. Sendra, J. Lloret, and L. Garcia, “An IoT service-oriented system for agriculture monitoring,” in Proc. IEEE Int. Conf. Communications, Paris, France, 2017, pp. 1–6.
    [229]
    N. Suma, S. R. Samson, S. Saranya, G. Shanmugapriya, and R. Subhashri, “IoT based smart agriculture monitoring system,” Int. J. Recent Innovat. Trends Comput. Commun., vol. 5, no. 2, pp. 177–181, Feb. 2017.
    [230]
    Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “The constrained application protocol (CoAP),” 2014. [Online]. Available: https://iottestware.readthedocs.io/en/master/coap_rfc.html
    [231]
    C. Potena, D. Nardi, and A. Pretto, “Fast and accurate crop and weed identification with summarized train sets for precision agriculture,” in Int. Conf. Intelligent Autonomous Systems. Shanghai, China: Springer, 2016, pp. 105–121.
    [232]
    I. Makhdoom, I. Zhou, M. Abolhasan, J. Lipman, and W. Ni, “PrivySharing: A blockchain-based framework for privacy-preserving and secure data sharing in smart cities,” Comp. Secur., vol. 88, Article No. 101653, Jan. 2020. doi: 10.1016/j.cose.2019.101653
    [233]
    G. L. Wang, P. Q. Ding, H. R. Chen, and J. Mu, “Green fresh product cost sharing contracts considering freshness-keeping effort,” Soft Comput., vol. 24, pp. 2671–2691, Feb. 2020. doi: 10.1007/s00500-019-03828-4
    [234]
    M. El Maouchi, O. Ersoy, and Z. Erkin, “Trade: A transparent, decentralized traceability system for the supply chain,” in Proc. 1st ERCIM Blockchain Workshop, Amsterdam, Netherlands, 2018.
    [235]
    K. Leng, Y. Bi, L. B. Jing, H. C. Fu, and I. Van Nieuwenhuyse, “Research on agricultural supply chain system with double chain architecture based on blockchain technology,” Future Generat. Comp. Syst., vol. 86, pp. 641–649, Sept. 2018. doi: 10.1016/j.future.2018.04.061
    [236]
    A. Carbone, D. Davcev, K. Mitreski, L. Kocarev, and V. Stankovski, “Blockchain-based distributed cloud/fog platform for IoT supply chain management,” in Proc. 8th Int. Conf. Advances in Computing, Electronics and Electrical Technology, Kuala Lumpur, Malaysia, 2018, pp. 51–58.
    [237]
    P. Lucena, A. P. D. Binotto, F. da Silva Momo, and H. Kim, A case study for grain quality assurance tracking based on a blockchain business network. 2018. arXiv preprint arXiv:1803.07877
    [238]
    F. Tian, “A supply chain traceability system for food safety based on HACCP, blockchain & internet of things,” in Proc. Int. Conf. Service Systems and Service Management, Dalian, China, 2017, pp. 1–6.
    [239]
    Q. N. Zhang, T. Huang, Y. X. Zhu, and M. K. Qiu, “A case study of sensor data collection and analysis in smart city: Provenance in smart food supply chain,” Int. J. Distrib. Sens. Netw., vol. 9, no. 11, Article No. 382132, Sept. 2013. doi: 10.1155/2013/382132
    [240]
    P. Li, S. H. Lee, and H. Y. Hsu, “Review on fruit harvesting method for potential use of automatic fruit harvesting systems,” Procedia Eng., vol. 23, pp. 351–366, Dec. 2011. doi: 10.1016/j.proeng.2011.11.2514
    [241]
    K. F. Sanders, “Orange harvesting systems review,” Biosyst. Eng., vol. 90, no. 2, pp. 115–125, Feb. 2005. doi: 10.1016/j.biosystemseng.2004.10.006
    [242]
    M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and H. Janicke, “Blockchain technologies for the internet of things: Research issues and challenges,” IEEE Int. Things J., vol. 6, no. 2, pp. 2188–2204, Apr. 2019. doi: 10.1109/JIOT.2018.2882794
    [243]
    M. A. Ferrag, L. Maglaras, and H. Janicke, “Blockchain and its role in the internet of things,” in Strategic Innovative Marketing and Tourism. Switzerland: Springer, 2019, pp. 1029–1038.
    [244]
    M. A. Ferrag and L. Maglaras, “DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids,” IEEE Trans. Engineering Management, vol. 67, no. 4, pp. 1285–1297, Nov. 2020. doi: 10.1109/TEM.2019.2922936
    [245]
    A. Derhab, M. Guerroumi, A. Gumaei, L. Maglaras, M. A. Ferrag, M. Mukherjee, and F. A. Khan, “Blockchain and random subspace learning-based ids for SDN-enabled industrial IoT security,” Sensors, vol. 19, no. 14, Article No. 3119, Jul. 2019. doi: 10.3390/s19143119
    [246]
    M. A. Ferrag and L. Maglaras, “DeliveryCoin: An ids and blockchain-based delivery framework for drone-delivered services,” Computers, vol. 8, no. 3, Article No. 58, Aug. 2019. doi: 10.3390/computers8030058
    [247]
    C. Dupraz, H. Marrou, G. Talbot, L. Dufour, A. Nogier, and Y. Ferard, “Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes,” Renew. Energy, vol. 36, no. 10, pp. 2725–2732, Oct. 2011. doi: 10.1016/j.renene.2011.03.005
    [248]
    H. Dinesh and J. M. Pearce, “The potential of agrivoltaic systems,” Renew. Sustain. Energy Rev., vol. 54, pp. 299–308, Feb. 2016. doi: 10.1016/j.rser.2015.10.024
    [249]
    A. Weselek, A. Ehmann, S. Zikeli, I. Lewandowski, S. Schindele, and P. Högy, “Agrophotovoltaic systems: Applications, challenges, and opportunities. A review,” Agron. Sustain. Dev., vol. 39, no. 4, Article No. 35, Jun. 2019. doi: 10.1007/s13593-019-0581-3
    [250]
    J. L. Xue, “Photovoltaic agriculture-new opportunity for photovoltaic applications in China,” Renew. Sustain. Energy Rev., vol. 73, pp. 1–9, Jun. 2017. doi: 10.1016/j.rser.2017.01.098
    [251]
    F. Yang, L. Shu, Y. Liu, K. L. Li, K. Huang, Y. Zhang, and Y. H. Sun, “Poster: Photovoltaic agricultural internet of things the next generation of smart farming,” in Proc. Int. Conf. Embedded Wireless Systems and Networks, United States, 2019, pp. 236–237.
    [252]
    H. Sharma, A. Haque, and Z. A. Jaffery, “Maximization of wireless sensor network lifetime using solar energy harvesting for smart agriculture monitoring,” Ad Hoc Netw., vol. 94, Article No. 101966, Nov. 2019. doi: 10.1016/j.adhoc.2019.101966
    [253]
    A. Walter, F. Liebisch, and A. Hund, “Plant phenotyping: From bean weighing to image analysis,” Plant Methods, vol. 11, Article No. 14, Mar. 2015. doi: 10.1186/s13007-015-0056-8
    [254]
    R. da Rosa Righi, G. Goldschmidt, R. Kunst, C. Deon, and C. A. da Costa, “Towards combining data prediction and internet of things to manage milk production on dairy cows,” Comp. Electron. Agric., vol. 169, Article No. 105156, Feb. 2020. doi: 10.1016/j.compag.2019.105156
    [255]
    K. Huang, K. L. Li, L. Shu, X. Yang, T. Gordon, and X. C. Wang, “High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps internet of things,” IEEE Wirel. Commun., vol. 27, no. 6, pp. 140–145, Dec. 2020.
    [256]
    “NAU-lincoln joint research center of intelligent engineering,” [Online]. Available: http://nljrc.pk.njau.edu.cn/index.php/latest-research-results. Accessed on: Sept. 17, 2020.
    [257]
    F. Yang, L. Shu, K. Huang, K. L. Li, G. J. Han, and Y. Liu, “A partition-based node deployment strategy in solar insecticidal lamps internet of things,” IEEE Int. Things J., vol. 7, no. 11, pp. 11223–11237, Nov. 2020. doi: 10.1109/JIOT.2020.2996514
    [258]
    C. Tselikis, C. Douligeris, L. Maglaras, and S. Mitropoulos, “On the conference key distribution system with user anonymity,” J. Inform. Secur. Appl., vol. 54, Article No. 102556, Oct. 2020.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(9)

    Article Metrics

    Article views (19373) PDF downloads(3838) Cited by()

    Highlights

    • We review the emerging technologies used by the Internet of Things for the future of smart agriculture.
    • We provide a classification of IoT applications for smart agriculture into seven categories, including, smart monitoring, smart water management, agrochemicals applications, disease management, smart harvesting, supply chain management, and smart agricultural practices.
    • We provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward supply chain management based on the blockchain technology for agricultural IoTs.
    • We highlight open research challenges and discuss possible future research directions for agricultural IoTs.

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return