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I. APPENDICES

The distal dendrite receives spikes represented by fractions,
obtained through population encoding based on quantile frac-
tions of the state spikes. To represent fractional value with
population neural spikes, the firing rate of the j-th neuron for
the value ρk is

rkj = Γje

−(ρk−λj)
2

2σ2
j , (1)

where ρk is k-th fractional value, each neuron in the population
has a Gaussian receptive field (λj , σj) with two parameters
of mean and standard deviation. The spiking activity of the
neurons is a Poisson process. The quantile fraction ρk is
encoded in the population spike

Pρk
=

〈
Pkj ∼ pkj =

(rkj∆t)2e−rkj∆t

n!
, j = 1, 2, ...,m

〉
,

(2)
where pkj is neuron j firing n spikes in time interval ∆t with
probability.

A. Loss Function

SCNN and final fully connected SNN weights were opti-
mized by minimizing Huber’s loss function.

HL(ρ, δij) = |ρ− (1−H(δij))|
L(η, δij)

η
, (3)

L(η, δij) =

{
1
2δ

2
ij , if|δij | ≤ η

η(|δij | − 1
2η), otherwise.

(4)

H(δij) =

{
0, if δij ≤ 0

1, otherwise.
(5)

Where δtij = rt + F (−1)(ρ̂i | st+1, at+1) − F (−1)(ρ̂j |
st, at) is the temporal difference (TD) error for quantile value
distribution.

The weight parameter W is optimized through the network
as a whole, by minimizing the Wasserstein loss of the quantile
value distribution:

WL(ρ) =

N−1∑
k=0

∫ ρk+1

ρk

|F−1(θ)− F−1(ρ̂k)|dθ, (6)

∂WL(ρ)

∂ρk
= 2F−1(ρk)− F−1(ρ̂k)− F−1(ρ̂k−1). (7)

We obtain the derivative of WL(ρ) with respect to W f
k ,

∂WL(ρ)

∂W f
k

=
N∑

n=1
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∂WL(ρ)

∂ρn
∆k,hO

s
t ,

(8)

where ∆k,h = (−ξhξk) + (N − k + 1)ξk(1− ξk).

The dendritic synaptic weights are trained with backpropa-
gation from the fully connected SNN, as follows:
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where φ =
∂HL(ρ,δij)

∂ot
, and Λ = (1− 1

τ − gα+gβ+gγ
gτ )T−t.


