IEEE/CAA Journal of Automatica Sinica
Citation: | Y. H. Wang, Y. F. Liu, and Z. Wang, "Theory and Experiments on Enclosing Control of Multi-Agent Systems," IEEE/CAA J. Autom. Sinica, vol. 8, no. 10, pp. 1677-1685, Oct. 2021. doi: 10.1109/JAS.2021.1004138 |
[1] |
X. Wang and X. Lu, “Three-dimensional impact angle constrained distributed guidance law design for cooperative attacks,” ISA Transactions, vol. 73, pp. 79–90, Feb. 2018. doi: 10.1016/j.isatra.2017.12.009
|
[2] |
L. Ding, Q. Han, L. Wang, and E. Sindi, “Distributed cooperative optimal control of DC microgrids with communication delays,” IEEE Trans. Industrial Informatics, vol. 14, no. 9, pp. 3924–3935, Sept. 2018. doi: 10.1109/TII.2018.2799239
|
[3] |
Y. Jia, W. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and J. Zhang, “Distributed cooperative co-evolution with adaptive computing resource allocation for large scale optimization,” IEEE Trans. Evolutionary Computation, vol. 23, no. 2, pp. 188–202, Apr. 2019. doi: 10.1109/TEVC.2018.2817889
|
[4] |
W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle cooperative control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71–82, Mar. 2007. doi: 10.1109/MCS.2007.338264
|
[5] |
Y. Cao and W. Ren, “Containment control with multiple stationary or dynamic leaders under a directed interaction graph,” in Proc. Int. 48th IEEE Conf. Decision and Control Held Jointly With 28th Chinese Control Conf., Shanghai, China, 2009, pp. 3014–3019.
|
[6] |
X. Wang, S. Li, and P. Shi, “Distributed finite-time containment control for double-integrator multiagent systems,” IEEE Trans. Cybernetics, vol. 44, no. 9, pp. 1518–1528, Sept. 2014. doi: 10.1109/TCYB.2013.2288980
|
[7] |
X. He, Q. Wang, and W. Yu, “Finite-time containment control for second-order multiagent systems under directed topology,” IEEE Trans. Circuits and Systems Ⅱ:Express Briefs, vol. 61, no. 8, pp. 619–623, Aug. 2014. doi: 10.1109/TCSII.2014.2327473
|
[8] |
X. Dong, Q. Li, Z. Ren, and Y. Zhong, “Formation-containment control for high-order linear time-invariant multi-agent systems with time delays,” Journal of the Franklin Institute, vol. 352, no. 9, pp. 3564–3584, Sept. 2015. doi: 10.1016/j.jfranklin.2015.05.008
|
[9] |
Z. Wang, J. Wu, R. Xu, and B. Yang, “Guaranteed cost consensus for multiple linear agents with given budgets,” in Proc. Int. 37th Chinese Control Conf., Wuhan, China, 2018, pp. 6966–6970.
|
[10] |
Y. Zheng and L. Wang, “Containment control of heterogeneous multiagent systems,” International Journal of Control, vol. 87, no. 1, pp. 1–8, Jul. 2013.
|
[11] |
S. Zuo, Y. Song, F. L. Lewis, and A. Davoudi, “Output containment control of linear heterogeneous multi-agent systems using internal model principle,” IEEE Trans. Cybernetics, vol. 47, no. 8, pp. 2099–2109, Aug. 2017. doi: 10.1109/TCYB.2016.2641394
|
[12] |
S. J. Yoo, “Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form,” Automatica, vol. 49, no. 7, pp. 2145–2153, Jul. 2013. doi: 10.1016/j.automatica.2013.03.007
|
[13] |
J. Mei, W. Ren, B. Li, and G. Ma, “Distributed containment control for multiple unknown second-order nonlinear systems with application to networked lagrangian systems,” IEEE Trans. Neural Networks and Learning Systems, vol. 26, no. 9, pp. 1885–1899, Sept. 2015. doi: 10.1109/TNNLS.2014.2359955
|
[14] |
Z. Zhu, Y. Pan, Q. Zhou, and C. Lu, “Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis,” IEEE Trans. Fuzzy Systems, pp. 1–1, Feb. 2020.
|
[15] |
Z. Wang, M. He, T. Zheng, Z. Fan, and G. Liu, “Guaranteed cost consensus for high-dimensional multi-agent systems with time-varying delays,” IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 181–189, Jan. 2018. doi: 10.1109/JAS.2017.7510430
|
[16] |
D. Ding, Z. Wang, B. Shen, and G. Wei, “Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-tostate stability in probability,” Automatica, vol. 62, pp. 284–291, Dec. 2015. doi: 10.1016/j.automatica.2015.09.037
|
[17] |
D. Ding, Z. Wang, D. W. Ho, and G. Wei, “Observer-based eventtriggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybernetics, vol. 47, no. 8, pp. 1936–1947, Aug. 2017. doi: 10.1109/TCYB.2016.2582802
|
[18] |
J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle formations,” IEEE Trans. Automatic Control, vol. 49, no. 9, pp. 1465–1476, Sept. 2004. doi: 10.1109/TAC.2004.834433
|
[19] |
E. Montijano, E. Cristofalo, D. Zhou, M. Schwager, and C. Saguees, “Vision-based distributed formation control without an external positioning system,” IEEE Trans. Robotics, vol. 32, no. 2, pp. 339–351, Apr. 2016. doi: 10.1109/TRO.2016.2523542
|
[20] |
W. Jasim and D. Gu, “Robust team formation control for quadrotors,” IEEE Trans. Control Systems Technology, vol. 26, no. 4, pp. 1516–1523, Jul. 2018. doi: 10.1109/TCST.2017.2705072
|
[21] |
H. Pei, S. Chen, and Q. Lai, “A local flocking algorithm of multi-agent dynamic systems,” International Journal of Control, vol. 88, no. 11, pp. 2242–2249, May 2015. doi: 10.1080/00207179.2015.1039595
|
[22] |
M. Deghat, B. D. Anderson, and Z. Lin, “Combined flocking and distance-based shape control of multi-agent formations,” IEEE Trans. Automatic Control, vol. 61, no. 7, pp. 1824–1837, Jul. 2016. doi: 10.1109/TAC.2015.2480217
|
[23] |
Z. Li, W. Ren, X. Liu, and M. Fu, “Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders,” International Journal of Robust and Nonlinear Control, vol. 23, no. 5, pp. 534–547, Dec. 2011.
|
[24] |
M. Ji, G. Ferrari-Trecate, M. Egerstedt, and A. Buffa, “Containment control in mobile networks,” IEEE Trans. Automatic Control, vol. 53, no. 8, pp. 1972–1975, Sept. 2008. doi: 10.1109/TAC.2008.930098
|
[25] |
Y. Cao, D. Stuart, W. Ren, and Z. Meng, “Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments,” IEEE Trans. Control Systems Technology, vol. 19, no. 4, pp. 929–938, Jul. 2011. doi: 10.1109/TCST.2010.2053542
|
[26] |
H. Liu, G. Xie, and L. Wang, “Necessary and sufficient conditions for containment control of networked multi-agent systems,” Automatica, vol. 48, no. 7, pp. 1415–1422, Jul. 2012. doi: 10.1016/j.automatica.2012.05.010
|
[27] |
Q. Zhou, W. Wang, H. Liang, M. Basin, and B. Wang, “Observer-based event-triggered fuzzy adaptive bipartite containment control of multiagent systems with input quantization,” IEEE Trans. Fuzzy Systems, vol. 29, no. 2, pp. 372–384, 2021. doi: 10.1109/TFUZZ.2019.2953573
|
[28] |
W. Ren and N. Sorensen, “Distributed coordination architecture for multi-robot formation control,” Robotics and Autonomous Systems, vol. 56, no. 4, pp. 324–333, Apr. 2008. doi: 10.1016/j.robot.2007.08.005
|
[29] |
A. Mahmood and Y. Kim, “Leader-following formation control of quadcopters with heading synchronization,” Aerospace Science and Technology, vol. 47, pp. 68–74, Dec. 2015. doi: 10.1016/j.ast.2015.09.009
|
[30] |
Z. Han, K. Guo, L. Xie, and Z. Lin, “Integrated relative localization and leader–follower formation control,” IEEE Trans. Automatic Control, vol. 64, no. 1, pp. 20–34, Jan. 2019. doi: 10.1109/TAC.2018.2800790
|
[31] |
W. Yi and B. Lei, “The geometry configuration control of uav formation flying based on consistency,” Journal of Wuhan University of Science and Technology, vol. 42, no. 2, pp. 150–154, Apr. 2019.
|
[32] |
N. Biggs, N. L. Biggs, and B. Norman, Algebraic Graph Theory. Cambridge University Press, 1993, vol. 67.
|
[33] |
R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, 2012.
|
[34] |
K. Ogata, Discrete-Time Control Systems. Prentice Hall Englewood Cliffs, NJ, 1995, vol. 2.
|
[35] |
R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970, vol. 28.
|
[36] |
Y. Cao, W. Ren, and M. Egerstedt, “Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks,” Automatica, vol. 48, no. 8, pp. 1586–1597, Aug. 2012. doi: 10.1016/j.automatica.2012.05.071
|