A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 11 Issue 12
Dec.  2024

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 15.3, Top 1 (SCI Q1)
    CiteScore: 23.5, Top 2% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
J. Xu, Z. Zhang, Z. Lin, Y. Chen, and  W. Ding,  “Multi-view dynamic kernelized evidential clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2435–2450, Dec. 2024. doi: 10.1109/JAS.2024.124608
Citation: J. Xu, Z. Zhang, Z. Lin, Y. Chen, and  W. Ding,  “Multi-view dynamic kernelized evidential clustering,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 12, pp. 2435–2450, Dec. 2024. doi: 10.1109/JAS.2024.124608

Multi-View Dynamic Kernelized Evidential Clustering

doi: 10.1109/JAS.2024.124608
Funds:  This work was supported in part by the Youth Foundation of Shanxi Province (5113240053), the Fundamental Research Funds for the Central Universities (G2023KY05102), the Natural Science Foundation of China (61976120), the Natural Science Foundation of Jiangsu Province (BK20231337), and the Natural Science Key Foundation of Jiangsu Education Department (21KJA510004)
More Information
  • It is challenging to cluster multi-view data in which the clusters have overlapping areas. Existing multi-view clustering methods often misclassify the indistinguishable objects in overlapping areas by forcing them into single clusters, increasing clustering errors. Our solution, the multi-view dynamic kernelized evidential clustering method (MvDKE), addresses this by assigning these objects to meta-clusters, a union of several related singleton clusters, effectively capturing the local imprecision in overlapping areas. MvDKE offers two main advantages: firstly, it significantly reduces computational complexity through a dynamic framework for evidential clustering, and secondly, it adeptly handles non-spherical data using kernel techniques within its objective function. Experiments on various datasets confirm MvDKE’s superior ability to accurately characterize the local imprecision in multi-view non-spherical data, achieving better efficiency and outperforming existing methods in overall performance.

     

  • loading
  • 1 Clustering methods based on credal partition are referred to as evidential clustering.
    2 Supplementary Meterial of this paper can be found in links https://github.com/JinyiXUres/MvDKE
    3 https://archive.ics.uci.edu/ml/datasets.
    4 “−” indicates that the method is unable to obtain a valid clustering result on this dataset.
  • [1]
    Y. Yang and H. Wang, “Multi-view clustering: A survey,” Big Data Min. Anal., vol. 1, no. 2, pp. 83–107, Jun. 2018. doi: 10.26599/BDMA.2018.9020003
    [2]
    X. Cai, D. Huang, G.-Y. Zhang, and C.-D. Wang, “Seeking commonness and inconsistencies: A jointly smoothed approach to multi-view subspace clustering,” Inf. Fusion, vol. 91, pp. 364–375, Mar. 2023. doi: 10.1016/j.inffus.2022.10.020
    [3]
    X. Yu, H. Liu, Y. Lin, N. Liu, and S. Sun, “Sample-level weights learning for multi-view clustering on spectral rotation,” Inf. Sci., vol. 619, pp. 38–51, Jan. 2023. doi: 10.1016/j.ins.2022.10.089
    [4]
    M.-S. Chen, C.-D. Wang, and J.-H. Lai, “Low-rank tensor based proximity learning for multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 5076–5090, May 2023. doi: 10.1109/TKDE.2022.3151861
    [5]
    W. Xia, Q. Gao, Q. Wang, X. Gao, C. Ding, and D. Tao, “Tensorized bipartite graph learning for multi-view clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 5187–5202, Apr. 2023. doi: 10.1109/TPAMI.2022.3187976
    [6]
    S. Wang, X. Lin, Z. Fang, S. Du, and G. Xiao, “Contrastive consensus graph learning for multi-view clustering,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 11, pp. 2027–2030, Nov. 2022. doi: 10.1109/JAS.2022.105959
    [7]
    N. Weir, D. Lindenbaum, A. Bastidas, A. Etten, V. Kumar, S. McPherson, J. Shermeyer, and H. Tang, “SpaceNet MVOI: A multi-view overhead imagery dataset,” in Proc. IEEE/CVF Int. Conf. Computer Vision, Seoul, Korea (South), 2019, pp. 992–1001.
    [8]
    F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R. Wang, and A. Yao, “Assembly101: A large-scale multi-view video dataset for understanding procedural activities,” in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition, New Orleans, USA, 2022, pp. 21064–21074.
    [9]
    Y. Zhou, X. Yue, Y. Chen, C. Ma, and K. Jiang, “Convolutional redistribution network for multi-view medical image diagnosis,” in Proc. 11th Workshop on Clinical Image-Based Procedures, Singapore, Singapore, 2023, pp. 54–61.
    [10]
    J. Han, J. Xu, F. Nie, and X. Li, “Multi-view K-means clustering with adaptive sparse memberships and weight allocation,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 2, pp. 816–827, Feb. 2022. doi: 10.1109/TKDE.2020.2986201
    [11]
    S. Huang, I. W. Tsang, Z. Xu, and J. Lv, “Measuring diversity in graph learning: A unified framework for structured multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp. 5869–5883, Dec. 2022. doi: 10.1109/TKDE.2021.3068461
    [12]
    Y. Wang and T. Aste, “Dynamic portfolio optimization with inverse covariance clustering,” Expert Syst. Appl., vol. 213, p. 118739, Mar. 2023. doi: 10.1016/j.eswa.2022.118739
    [13]
    L. Chen, K. Wang, M. Li, M. Wu, W. Pedrycz, and K. Hirota, “K-means clustering-based kernel canonical correlation analysis for multimodal emotion recognition in human-robot interaction,” IEEE Trans. Ind. Electron., vol. 70, no. 1, pp. 1016–1024, Jan. 2023. doi: 10.1109/TIE.2022.3150097
    [14]
    P. Favati and O. Menchi, “A two-phase strategy for nonconvex clusters integrating a spectral clustering with a merging technique,” Expert Syst. Appl., vol. 214, p. 119099, Mar. 2023. doi: 10.1016/j.eswa.2022.119099
    [15]
    C. Tang, X. Liu, X. Zhu, E. Zhu, Z. Luo, L. Wang, and W. Gao, “CGD: Multi-view clustering via cross-view graph diffusion,” in Proc. 34th AAAI Conf. Artificial Intelligence, New York, USA, 2020, pp. 5924–5931.
    [16]
    G. Zhong and C.-M. Pun, “Improved normalized cut for multi-view clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp. 10244–10251, Dec. 2022. doi: 10.1109/TPAMI.2021.3136965
    [17]
    J. Wang, C. Tang, Z. Wan, W. Zhang, K. Sun, and A. Y. Zomaya, “Efficient and effective one-step multiview clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 9, pp. 12224–12235, Sep. 2024. doi: 10.1109/TNNLS.2023.3253246
    [18]
    D. Wu, J. Lu, F. Nie, R. Wang, and Y. Yuan, “EMGC.2F: Efficient multi-view graph clustering with comprehensive fusion,” in Proc. 31st Int. Joint Conf. Artificial Intelligence, Vienna, Austria, 2022, pp. 3566–3572.
    [19]
    D. Huang, C.-D. Wang, and J.-H. Lai, “Fast multi-view clustering via ensembles: Towards scalability, superiority, and simplicity,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp. 11388–11402, Nov. 2023. doi: 10.1109/TKDE.2023.3236698
    [20]
    J. Lao, D. Huang, C.-D. Wang, and J.-H. Lai, “Towards scalable multi-view clustering via joint learning of many bipartite graphs,” IEEE Trans. Big Data, vol. 10, no. 1, pp. 77–91, Feb. 2024. doi: 10.1109/TBDATA.2023.3325045
    [21]
    C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor constrained multiview subspace clustering,” in Proc. IEEE Int. Conf. Computer Vision, Santiago, Chile, 2015, pp. 1582–1590.
    [22]
    C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D. Xu, “Generalized latent multi-view subspace clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1, pp. 86–99, Jan. 2020. doi: 10.1109/TPAMI.2018.2877660
    [23]
    G.-Y. Zhang, X.-W. Chen, Y.-R. Zhou, C.-D. Wang, D. Huang, and X.-Y. He, “Kernelized multi-view subspace clustering via auto-weighted graph learning,” Appl. Intell., vol. 52, no. 1, pp. 716–731, Jan. 2022. doi: 10.1007/s10489-021-02365-8
    [24]
    S.-G. Fang, D. Huang, X.-S. Cai, C.-D. Wang, C. He, and Y. Tang, “Efficient multi-view clustering via unified and discrete bipartite graph learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 8, pp. 11436–11447, Aug. 2024. doi: 10.1109/TNNLS.2023.3261460
    [25]
    J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithms. New York, USA: Springer Science & Business Media, 2013.
    [26]
    C. Wang, W. Pedrycz, Z. Li, and M. C. Zhou, “Residual-driven fuzzy c-means clustering for image segmentation,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 4, pp. 876–889, Apr. 2021. doi: 10.1109/JAS.2020.1003420
    [27]
    G. Cleuziou, M. Exbrayat, L. Martin, and J.-H. Sublemontier, “CoFKM: A centralized method for multiple-view clustering,” in Proc. 9th IEEE Int. Conf. Data Mining, Miami Beach, USA, 2009, pp. 752–757.
    [28]
    Y. Jiang, F.-L. Chung, S. Wang, Z. Deng, J. Wang, and P. Qian, “Collaborative fuzzy clustering from multiple weighted views,” IEEE Trans. Cybern., vol. 45, no. 4, pp. 688–701, Apr. 2015. doi: 10.1109/TCYB.2014.2334595
    [29]
    M.-S. Yang and K. P. Sinaga, “Collaborative feature-weighted multi-view fuzzy c-means clustering,” Pattern Recognit., vol. 119, p. 108064, Nov. 2021. doi: 10.1016/j.patcog.2021.108064
    [30]
    G. Shafer, A Mathematical Theory of Evidence. Princeton, USA: Princeton University Press, 1976.
    [31]
    T. Den?ux and M.-H. Masson, “EVCLUS: Evidential clustering of proximity data,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 1, pp. 95–109, Feb. 2004. doi: 10.1109/TSMCB.2002.806496
    [32]
    V. Antoine, B. Quost, M.-H. Masson, and T. Denoeux, “CECM: Constrained evidential c-means algorithm,” Comput. Stat. Data Anal., vol. 56, no. 4, pp. 894–914, Apr. 2012. doi: 10.1016/j.csda.2010.09.021
    [33]
    Z.-G. Liu, Q. Pan, J. Dezert, and G. Mercier, “Credal c-means clustering method based on belief functions,” Knowl.-Based Syst., vol. 74, pp. 119–132, Jan. 2015. doi: 10.1016/j.knosys.2014.11.013
    [34]
    Z.-W. Zhang, Z. Liu, A. Martin, Z.-G. Liu, and K. Zhou, “Dynamic evidential clustering algorithm,” Knowl.-Based Syst., vol. 213, p. 106643, Feb. 2021. doi: 10.1016/j.knosys.2020.106643
    [35]
    L. Jiao, F. Wang, Z.-G. Liu, and Q. Pan, “TECM: Transfer learning-based evidential c-means clustering,” Knowl.-Based Syst., vol. 257, p. 109937, Dec. 2022. doi: 10.1016/j.knosys.2022.109937
    [36]
    K. Zhou, M. Guo, and M. Jiang, “Evidential weighted multi-view clustering,” in Proc. 6th Int. Conf. Belief Functions: Theory and Applications, Shanghai, China, 2021, pp. 22–32.
    [37]
    C. Gong and Y. You, “Sparse reconstructive evidential clustering for multi-view data,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 2, pp. 459–473, Feb. 2024. doi: 10.1109/JAS.2023.123579
    [38]
    P. Smets, “The transferable belief model for quantified belief representation,” in Quantified Representation of Uncertainty and Imprecision, P. Smets, Ed. Dordrecht, The Netherlands: Springer, 1998, pp. 267–301.
    [39]
    Z.-G. Liu, G. Qiu, G. Mercier, and Q. Pan, “A transfer classification method for heterogeneous data based on evidence theory,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 8, pp. 5129–5141, Aug. 2021. doi: 10.1109/TSMC.2019.2945808
    [40]
    Z.-F. Ma, H.-P. Tian, Z.-C. Liu, and Z.-W. Zhang, “A new incomplete pattern belief classification method with multiple estimations based on KNN,” Appl. Soft Comput., vol. 90, p. 106175, May 2020. doi: 10.1016/j.asoc.2020.106175
    [41]
    Z. Liu, X. Zhang, J. Niu, and J. Dezert, “Combination of classifiers with different frames of discernment based on belief functions,” IEEE Trans. Fuzzy Syst., vol. 29, no. 7, pp. 1764–1774, Jul. 2021. doi: 10.1109/TFUZZ.2020.2985332
    [42]
    Z.-W. Zhang, H.-P. Tian, L.-Z. Yan, A. Martin, and K. Zhou, “Learning a credal classifier with optimized and adaptive multiestimation for missing data imputation,” IEEE Trans. Syst. Man Cybern. Syst., vol. 52, no. 7, pp. 4092–4104, Jul. 2022. doi: 10.1109/TSMC.2021.3090210
    [43]
    Z.-W. Zhang, Z. Liu, Z.-F. Ma, Y. Zhang, and H. Wang, “A new belief-based incomplete pattern unsupervised classification method,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5084–5097, Nov. 2022. doi: 10.1109/TKDE.2021.3049511
    [44]
    Z. Zhang, S. Ye, Y. Zhang, W. Ding, and H. Wang, “Belief combination of classifiers for incomplete data,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 4, pp. 652–667, Apr. 2022. doi: 10.1109/JAS.2022.105458
    [45]
    M.-H. Masson and T. Denoeux, “ECM: An evidential version of the fuzzy c-means algorithm,” Pattern Recognit., vol. 41, no. 4, pp. 1384–1397, Apr. 2008. doi: 10.1016/j.patcog.2007.08.014
    [46]
    B. Scholkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Muller, G. Ratsch, and A. J. Smola, “Input space versus feature space in kernel-based methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017, Sep. 1999. doi: 10.1109/72.788641
    [47]
    A. Geifman, M. Galun, D. Jacobs, and R. Basri, “On the spectral bias of convolutional neural tangent and Gaussian process kernels,” in Proc. 36th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2022, pp. 818.
    [48]
    W. Liang, X. Liu, Y. Liu, S. Zhou, J.-J. Huang, S. Wang, J. Liu, Y. Zhang, and E. Zhu, “Stability and generalization of kernel clustering: From single kernel to multiple kernel,” in Proc. 36th Int. Conf. Neural Information Processing Systems, New Orleans, USA, 2022, pp. 2437.
    [49]
    Y. Lu, X. Zheng, R. Wang, F. Nie, and X. Li, “A unified framework for discrete multi-kernel k-means with kernel diversity regularization,” in Proc. 26th Int. Conf. Pattern Recognition, Montreal, Canada, 2022, pp. 4934–4940.
    [50]
    Y. Tang, Z. Pan, W. Pedrycz, F. Ren, and X. Song, “Viewpoint-based kernel fuzzy clustering with weight information granules,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 7, no. 2, pp. 342–356, Apr. 2023. doi: 10.1109/TETCI.2022.3201620
    [51]
    A. Gupta and S. Das, “Transfer clustering using a multiple kernel metric learned under multi-instance weak supervision,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 6, no. 4, pp. 828–838, Aug. 2022. doi: 10.1109/TETCI.2021.3110526
    [52]
    D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy c-means algorithm with application in medical image segmentation,” Artif. Intell. Med., vol. 32, no. 1, pp. 37–50, Sep. 2004. doi: 10.1016/j.artmed.2004.01.012
    [53]
    H. Wang, Y. Yang, and B. Liu, “GMC: Graph-based multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 6, pp. 1116–1129, Jun. 2020. doi: 10.1109/TKDE.2019.2903810
    [54]
    X. Gao, X. Ma, W. Zhang, J. Huang, H. Li, Y. Li, and J. Cui, “Multi-view clustering with self-representation and structural constraint,” IEEE Trans. Big Data, vol. 8, no. 4, pp. 882–893, Aug. 2022. doi: 10.1109/TBDATA.2021.3128906

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (25) PDF downloads(2) Cited by()

    Highlights

    • We propose a multi-view evidential clustering algorithm that can handle overlapping areas between clusters
    • The method can characterize imprecision and handle non-spherical data
    • We provide a strategy to explore the potential structure of non-spherical data
    • We provide a dynamic framework to reduce the computational complexity

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return