A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 3
Mar.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
V. P. Tran, M. A. Garratt, K. Kasmarik, and  S. G. Anavatti,  “Dynamic frontier-led swarming: Multi-robot repeated coverage in dynamic environments,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 646–661, Mar. 2023. doi: 10.1109/JAS.2023.123087
Citation: V. P. Tran, M. A. Garratt, K. Kasmarik, and  S. G. Anavatti,  “Dynamic frontier-led swarming: Multi-robot repeated coverage in dynamic environments,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 646–661, Mar. 2023. doi: 10.1109/JAS.2023.123087

Dynamic Frontier-Led Swarming: Multi-Robot Repeated Coverage in Dynamic Environments

doi: 10.1109/JAS.2023.123087
Funds:  This work was supported by the DEFENCE SCIENCE & TECHNOLOGY GROUP (DSTG) (9729). The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group
More Information
  • A common assumption of coverage path planning research is a static environment. Such environments require only a single visit to each area to achieve coverage. However, some real-world environments are characterised by the presence of unexpected, dynamic obstacles. They require areas to be revisited periodically to maintain an accurate coverage map, as well as reactive obstacle avoidance. This paper proposes a novel swarm-based control algorithm for multi-robot exploration and repeated coverage in environments with unknown, dynamic obstacles. The algorithm combines two elements: frontier-led swarming for driving exploration by a group of robots, and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles. We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments. We measure both repeated coverage performance and obstacle avoidance ability. Through a series of comparison experiments, we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.


  • loading
  • [1]
    M. Corah, C. O’Meadhra, K. Goel, and N. Michael, “Communication-efficient planning and mapping for multi-robot exploration in large environments,” IEEE Rob. Autom. Lett., vol. 4, no. 2, pp. 1715–1721, Apr. 2019. doi: 10.1109/LRA.2019.2897368
    V. P. Tran, M. A. Garratt, K. Kasmarik, S. G. Anavatti, and S. Abpeikar, “Frontier-led swarming: Robust multi-robot coverage of unknown environments,” Swarm Evol. Comput., vol. 75, p. 101171, Dec. 2022. doi: 10.1016/j.swevo.2022.101171
    J. M. Palacios-Gasós, D. Tardioli, E. Montijano, and C. Sagüés, “Equitable persistent coverage of non-convex environments with graph-based planning,” Int. J. Rob. Res., vol. 38, no. 14, pp. 1674–1694, Dec. 2019. doi: 10.1177/0278364919882082
    X. Y. Luo, L. Feng, J. Yan, and X. P. Guan, “Dynamic coverage with wireless sensor and actor networks in underwater environment,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 274–281, Jul. 2015. doi: 10.1109/JAS.2015.7152661
    Y. Kantaros, M. Thanou, and A. Tzes, “Distributed coverage control for concave areas by a heterogeneous robot–swarm with visibility sensing constraints,” Automatica, vol. 53, pp. 195–207, Mar. 2015. doi: 10.1016/j.automatica.2014.12.034
    S. Manjanna, A. Q. Li, R. N. Smith, I. Rekleitis, and G. Dudek, “Heterogeneous multi-robot system for exploration and strategic water sampling,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, Australia, 2018, pp. 4873–4880.
    L. Jiang, H. Y. Huang, and Z. H. Ding, “Path planning for intelligent robots based on deep Q-learning with experience replay and heuristic knowledge,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1179–1189, Jul. 2020. doi: 10.1109/JAS.2019.1911732
    T. M. Cabreira, L. B. Brisolara, and P. R. Ferreira Jr., “Survey on coverage path planning with unmanned aerial vehicles,” Drones, vol. 3, no. 1, p. 4, Jan. 2019. doi: 10.3390/drones3010004
    M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm robotic behaviors and current applications,” Front. Robot. AI, vol. 7, p. 36, Apr. 2020. doi: 10.3389/frobt.2020.00036
    R. Almadhoun, T. Taha, L. Seneviratne, and Y. Zweiri, “A survey on multi-robot coverage path planning for model reconstruction and mapping,” SN Appl. Sci., vol. 1, no. 8, p. 847, Jul. 2019. doi: 10.1007/s42452-019-0872-y
    M. Y. Zhong and C. G. Cassandras, “Distributed coverage control and data collection with mobile sensor networks,” IEEE Trans. Autom. Control, vol. 56, no. 10, pp. 2445–2455, Oct. 2011. doi: 10.1109/TAC.2011.2163860
    M. Masar, “A biologically inspired swarm robot coordination algorithm for exploration and surveillance,” in Proc. IEEE 17th Int. Conf. Intelligent Engineering Systems, San Jose, Costa Rica, 2013, pp. 271–275.
    C. P. Le, A. Q. Pham, H. M. La, and D. Feil-Seifer, “A multi-robotic system for environmental dirt cleaning,” in Proc. IEEE/SICE Int. Symp. System Integration, Honolulu, USA, 2020, pp. 1294–1299.
    N. F. Wen, L. L. Zhao, X. H. Su, and P. J. Ma, “UAV online path planning algorithm in a low altitude dangerous environment,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 2, pp. 173–185, Apr. 2015. doi: 10.1109/JAS.2015.7081657
    C. Song, L. Liu, G. Feng, Y. Wang, and Q. Gao, “Persistent awareness coverage control for mobile sensor networks,” Automatica, vol. 49, no. 6, pp. 1867–1873, Jun. 2013. doi: 10.1016/j.automatica.2013.02.048
    O. Arslan and D. E. Koditschek, “Voronoi-based coverage control of heterogeneous disk-shaped robots,” in Proc. IEEE Int. Conf. Robotics and Automation, Stockholm, Sweden, 2016, pp. 4259–4266.
    F. Niroui, K. C. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning robot for search and rescue applications: Exploration in unknown cluttered environments,” IEEE Rob. Autom. Lett., vol. 4, no. 2, pp. 610–617, Apr. 2019. doi: 10.1109/LRA.2019.2891991
    Y. H. Wang, A. L. Liang, and H. B. Guan, “Frontier-based multi-robot map exploration using particle swarm optimization,” in Proc. IEEE Symp. Swarm Intelligence, Paris, France, 2011, pp. 1–6.
    S. Sharma and R. Tiwari, “A survey on multi robots area exploration techniques and algorithms,” in Proc. Int. Conf. Computational Techniques in Information and Communication Technologies, New Delhi, India, 2016, pp. 151–158.
    J. A. Caley, N. R. J. Lawrance, and G. A. Hollinger, “Deep learning of structured environments for robot search,” Auton. Robots, vol. 43, no. 7, pp. 1695–1714, Jan. 2019. doi: 10.1007/s10514-018-09821-4
    B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation CIRA’97. ‘Towards New Computational Principles for Robotics and Automation’, Monterey, USA, 1997, pp. 146–151.
    R. Hunjet, B. Fraser, T. Stevens, L. Hodges, K. Mayen, J. C. Barca, M. Cochrane, R. Cannizzaro, and J. L. Palmer, “Data ferrying with swarming UAS in tactical defence networks,” in Proc. IEEE Int. Conf. Robotics and Automation, Brisbane, Australia, 2018, pp. 6381–6388.
    M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D. dissertation, Politecnico di Milano, Milano, Italian, 1992.
    N. Lemmens, S. De Jong, K. Tuyls, and A. Nowé, “Bee behaviour in multi-agent systems,” in Proc. 5th, 6th, and 7th European Symp. Adaptive Agents and Multi-Agent Systems, 2005, pp. 145–156.
    B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee, “Stigmergic coverage algorithm for multi-robot systems (demonstration),” in Proc. 11th Int. Conf. Autonomous Agents and Multiagent Systems, Valencia, Spain, 2012, pp. 1497–1498.
    B. Broecker, I. Caliskanelli, K. Tuyls, E. I. Sklar, and D. Hennes, “Hybrid insect-inspired multi-robot coverage in complex environments,” in Proc. 16th Conf. Towards Autonomous Robotic Systems, Liverpool, UK, 2015, pp. 56–68.
    E. Kuiper and S. Nadjm-Tehrani, “Mobility models for UAV group reconnaissance applications,” in Proc. Int. Conf. Wireless and Mobile Communications, Bucharest, Romania, 2006, pp. 33.
    A. Dussutour, S. C. Nicolis, G. Shephard, M. Beekman, and D. J. T. Sumpter, “The role of multiple pheromones in food recruitment by ants,” J. Exp. Biol., vol. 212, no. 15, pp. 2337–2348, Aug. 2009. doi: 10.1242/jeb.029827
    T. Liu, X. L. Sun, C. Hu, Q. B. Fu, H. Isakhani, and S. G. Yue, “Investigating multiple pheromones in swarm robots – a case study of multi-robot deployment,” in Proc. 5th Int. Conf. Advanced Robotics and Mechatronics, Shenzhen, China, 2020, pp. 595–601.
    G. Lee and D. Chwa, “Decentralized behavior-based formation control of multiple robots considering obstacle avoidance,” Intell. Serv. Rob., vol. 11, no. 1, pp. 127–138, Jan. 2018. doi: 10.1007/s11370-017-0240-y
    Y. Y. Dai, Y. G. Kim, S. G. Wee, D. H. Lee, and S. G. Lee, “A switching formation strategy for obstacle avoidance of a multi-robot system based on robot priority model,” ISA Trans., vol. 56, pp. 123–134, May 2015. doi: 10.1016/j.isatra.2014.10.008
    Y. Cheng and W. D. Zhang, “Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels,” Neurocomputing, vol. 272, pp. 63–73, Jan. 2018. doi: 10.1016/j.neucom.2017.06.066
    H. V. Abeywickrama, B. A. Jayawickrama, Y. He, and E. Dutkiewicz, “Algorithm for energy efficient inter-UAV collision avoidance,” in Proc. 17th Int. Symp. Communications and Information Technologies, Cairns, Australia, 2017, pp. 1–5.
    F. Chao, D. J. Zhou, C. M. Lin, L. Z. Yang, C. L. Zhou, and C. J. Shang, “Type-2 fuzzy hybrid controller network for robotic systems,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3778–3792, Aug. 2020. doi: 10.1109/TCYB.2019.2919128
    Q. Lu, D. Zhang, W. J. Ye, J. Y. Fan, S. Liu, and C. Y. Su, “Targeting posture control with dynamic obstacle avoidance of constrained uncertain wheeled mobile robots including unknown skidding and slipping,” IEEE Trans. Syst.,Man,Cybern.: Syst., vol. 51, no. 11, pp. 6650–6659, Nov. 2021. doi: 10.1109/TSMC.2019.2962732
    K. Biswas and I. Kar, “On reduction of oscillations in target tracking by artificial potential field method,” in Proc. 9th Int. Conf. Industrial and Information Systems, Gwalior, India, 2014, pp. 1–6.
    J. Ellingson, E. Pitts, C. K. Peterson, K. Warnick, and T. McLain, “Uncertainty velocity obstacle avoidance for sUAS trajectory planning in a 2D plane,” in Proc. IEEE Aerospace Conf., Big Sky, USA, 2020, pp. 1–11.
    J. López, P. Sanchez-Vilariño, M. D. Cacho, and E. L. Guillén, “Obstacle avoidance in dynamic environments based on velocity space optimization,” Rob. Auton. Syst., vol. 131, p. 103569, Sept. 2020. doi: 10.1016/j.robot.2020.103569
    V. P. Tran, M. A. Garratt, and I. R. Petersen, “Switching formation strategy with the directed dynamic topology for collision avoidance of a multi-robot system in uncertain environments,” IET Control Theory Appl., vol. 14, no. 18, pp. 2948–2959, Dec. 2020. doi: 10.1049/iet-cta.2020.0502
    V. P. Tran, F. Santoso, M. A. Garratt, and I. R. Petersen, “Distributed formation control using fuzzy self-tuning of strictly negative imaginary consensus controllers in aerial robotics,” IEEE/ASME Trans. Mechatron., vol. 26, no. 5, pp. 2306–2315, Oct. 2021. doi: 10.1109/TMECH.2020.3036829
    V. P. Tran, M. A. Garratt, and I. R. Petersen, “Multi-vehicle formation control and obstacle avoidance using negative-imaginary systems theory,” IFAC J. Syst. Control, vol. 15, p. 100117, Mar. 2021. doi: 10.1016/j.ifacsc.2020.100117
    S. H. Wen, Z. T. Wen, D. Zhang, H. Zhang, and T. Wang, “A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning,” Appl. Soft Comput., vol. 110, p. 107605, Oct. 2021. doi: 10.1016/j.asoc.2021.107605
    K. Cheng, Y. Wang, and P. Dasgupta, “Distributed area coverage using robot flocks,” in Proc. World Congress on Nature & Biologically Inspired Computing, Coimbatore, India, 2009, pp. 678–683.
    C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proc. 14th Annu. Conf. Computer Graphics and Interactive Techniques, Anaheim, USA, 1987, pp. 25–34.
    B. Y. Song, Z. D. Wang, and L. Zou, “An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve,” Appl. Soft Comput., vol. 100, p. 106960, Mar. 2021. doi: 10.1016/j.asoc.2020.106960
    T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson, and I. Soderkvist, “Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles,” IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 167–172, Jan. 2010. doi: 10.1109/TASE.2009.2015886
    J. Y. Sun, J. Tang, and S. Y. Lao, “Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm,” IEEE Access, vol. 5, pp. 18382–18390, Aug. 2017. doi: 10.1109/ACCESS.2017.2746752
    J. H. Peng, I. H. Li, Y. H. Chien, C. C. Hsu, and W. Y. Wang, “Multi-robot path planning based on improved D lite algorithm,” in Proc. IEEE 12th Int. Conf. Networking, Sensing and Control, Taipei, China, 2015, pp. 350–353.
    M. S. Catherine and E. Lucet, “A modified hybrid reciprocal velocity obstacles approach for multi-robot motion planning without communication,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, USA, 2020, pp. 5708–5714.
    K. Al-Mutib, M. AlSulaiman, M. Emaduddin, H. Ramdane, and E. Mattar, “D* lite based real-time multi-agent path planning in dynamic environments,” in Proc. Third Int. Conf. Computational Intelligence, Modelling & Simulation, Langkawi, Malaysia, 2011, pp. 170–174.


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(5)

    Article Metrics

    Article views (174) PDF downloads(68) Cited by()


    • Present the novel multi-robot repeated area coverage and obstacle avoidance methods
    • Propose a flocking model to maintain a close-knit formation
    • Construct an evaluation of our method in different settings
    • Conduct a comparative study benchmarking our algorithm against other methodologies


    DownLoad:  Full-Size Img  PowerPoint