A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 3
Mar.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 11.8, Top 4% (SCI Q1)
    CiteScore: 17.6, Top 3% (Q1)
    Google Scholar h5-index: 77, TOP 5
Turn off MathJax
Article Contents
X. Y. Liu, T. Ma, Z. X. Tang, X. H. Qin, H. B. Zhou, and X. M. Shen, “UltraStar: A lightweight simulator of ultra-dense LEO satellite constellation networking for 6G,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 632–645, Mar. 2023. doi: 10.1109/JAS.2023.123084
Citation: X. Y. Liu, T. Ma, Z. X. Tang, X. H. Qin, H. B. Zhou, and X. M. Shen, “UltraStar: A lightweight simulator of ultra-dense LEO satellite constellation networking for 6G,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 3, pp. 632–645, Mar. 2023. doi: 10.1109/JAS.2023.123084

UltraStar: A Lightweight Simulator of Ultra-Dense LEO Satellite Constellation Networking for 6G

doi: 10.1109/JAS.2023.123084
Funds:  This work was supported in part by the National Key Research and Development Program of China (2020YFB1806104), the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (BK20220067), and the Natural Sciences and Engineering Research Council of Canada (NSERC)
More Information
  • The mega-constellation network has gained significant attention recently due to its great potential in providing ubiquitous and high-capacity connectivity in sixth-generation (6G) wireless communication systems. However, the high dynamics of network topology and large scale of mega-constellation pose new challenges to the constellation simulation and performance evaluation. In this paper, we introduce UltraStar, a lightweight network simulator, which aims to facilitate the complicated simulation for the emerging mega-constellation of unprecedented scale. Particularly, a systematic and extensible architecture is proposed, where the joint requirement for network simulation, quantitative evaluation, data statistics and visualization is fully considered. For characterizing the network, we make lightweight abstractions of physical entities and models, which contain basic representatives of networking nodes, structures and protocol stacks. Then, to consider the high dynamics of Walker constellations, we give a two-stage topology maintenance method for constellation initialization and orbit prediction. Further, based on the discrete event simulation (DES) theory, a new set of discrete events is specifically designed for basic network processes, so as to maintain network state changes over time. Finally, taking the first-generation Starlink of 11 927 low earth orbit (LEO) satellites as an example, we use UltraStar to fully evaluate its network performance for different deployment stages, such as characteristics of constellation topology, performance of end-to-end service and effects of network-wide traffic interaction. The simulation results not only demonstrate its superior performance, but also verify the effectiveness of UltraStar.

     

  • loading
  • [1]
    N. Cheng, W. C. Xu, W. S. Shi, Y. Zhou, N. Lu, H. B. Zhou, and X. M. Shen, “Air-ground integrated mobile edge networks: Architecture, challenges, and opportunities,” IEEE Commun. Mag., vol. 56, no. 8, pp. 26–32, Aug. 2018. doi: 10.1109/MCOM.2018.1701092
    [2]
    T. Wei, W. Feng, Y. F. Chen, C. X. Wang, N. Ge, and J. H. Lu, “Hybrid satellite-terrestrial communication networks for the maritime internet of things: Key technologies, opportunities, and challenges,” IEEE Internet Things J., vol. 8, no. 11, pp. 8910–8934, Jun. 2021. doi: 10.1109/JIOT.2021.3056091
    [3]
    S. Z. Chen, Y. C. Liang, S. H. Sun, S. L. Kang, W. C. Cheng, and M. G. Peng, “Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed,” IEEE Wireless Commun., vol. 27, no. 2, pp. 218–228, Apr. 2020. doi: 10.1109/MWC.001.1900333
    [4]
    T. Ma, H. B. Zhou, B. Qian, N. Cheng, X. M. Shen, X. Chen, and B. Bai, “UAV-LEO integrated backbone: A ubiquitous data collection approach for B5G internet of remote things networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 11, pp. 3491–3505, Nov. 2021. doi: 10.1109/JSAC.2021.3088626
    [5]
    J. J. Liu, Y. P. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated network: A survey,” IEEE Commun. Surv. Tut., vol. 20, no. 4, pp. 2714–2741, May 2018. doi: 10.1109/COMST.2018.2841996
    [6]
    S. Z. Chen, S. H. Sun, and S. L. Kang, “System integration of terrestrial mobile communication and satellite communication — the trends, challenges and key technologies in B5G and 6G,” China Commun., vol. 17, no. 12, pp. 156–171, Dec. 2020. doi: 10.23919/JCC.2020.12.011
    [7]
    O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis, “Satellite communications in the new space era: A survey and future challenges,” IEEE Commun. Surv. Tut., vol. 23, no. 1, pp. 70–109, Feb. 2021. doi: 10.1109/COMST.2020.3028247
    [8]
    J. P. Choi and C. Joo, “Challenges for efficient and seamless space-terrestrial heterogeneous networks,” IEEE Commun. Mag., vol. 53, no. 5, pp. 156–162, May 2015. doi: 10.1109/MCOM.2015.7105655
    [9]
    M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, “Satellite communications supporting internet of remote things,” IEEE Internet Things J., vol. 3, no. 1, pp. 113–123, Feb. 2016. doi: 10.1109/JIOT.2015.2487046
    [10]
    C. Zhang, C. X. Jiang, L. L. Kuang, J. Jin, Y. Z. He, and Z. Han, “Spatial spectrum sharing for satellite and terrestrial communication networks,” IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 3, pp. 1075–1089, Jun. 2019. doi: 10.1109/TAES.2018.2889585
    [11]
    D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, and H. V. Poor, “6G Internet of things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022. doi: 10.1109/JIOT.2021.3103320
    [12]
    Y. Lee and J. P. Choi, “Connectivity analysis of mega-constellation satellite networks with optical intersatellite links,” IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 6, pp. 4213–4226, Dec. 2021. doi: 10.1109/TAES.2021.3090914
    [13]
    R. D. Deng, B. Y. Di, S. Z. Chen, S. H. Sun, and L. Y. Song, “Ultra-dense LEO satellite offloading for terrestrial networks: How much to pay the satellite operator?” IEEE Trans. Wireless Communications, vol. 19, no. 10, pp. 6240–6254, Oct. 2020.
    [14]
    B. Y. Di, H. L. Zhang, L. Y.Song, Y. H. Li, and G. Y. Li, “Ultra-dense LEO: Integrating terrestrial-satellite networks into 5G and beyond for data offloading,” IEEE Trans. Wireless Communications, vol. 18, no. 1, pp. 47–62, Jan. 2019.
    [15]
    Z. Q. Lai, Q. Wu, H. W. Li, M. Y. Lv, and J. P. Wu, “OrbitCast: Exploiting mega-constellations for low-latency earth observation,” in Proc. 29th IEEE Int. Conf. Network Protocols, Dallas, TX, USA, 2021, pp. 1–12.
    [16]
    D. Bhattacherjee and A. Singla, “Network topology design at 27, 000 km/hour,” in Proc. 15th Int. Conf. Emerging Networking Experiments and Technologies, Orlando, Florida, 2019, pp. 341–354.
    [17]
    Y. Wang, M. Sheng, W. H. Zhuang, S. Zhang, N. Zhang, R. Z. Liu, and J. D. Li, “Multi-resource coordinate scheduling for earth observation in space information networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 2, pp. 268–279, Feb. 2018. doi: 10.1109/JSAC.2018.2804045
    [18]
    Y. H. Du, L. Wang, L. N. Xing, J. G. Yan, and M. S. Cai, “Data-driven heuristic assisted memetic algorithm for efficient inter-satellite link scheduling in the Beidou navigation satellite system,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 11, pp. 1800–1816, Nov. 2021. doi: 10.1109/JAS.2021.1004174
    [19]
    A. Kak and I. F. Akyildiz, “Designing large-scale constellations for the internet of space things with CubeSats,” IEEE Internet Things J., vol. 8, no. 3, pp. 1749–1768, Feb. 2021.
    [20]
    J. Kim, J. Lee, H. Ko, T. Kim, and S. Pack, “Space mobile networks: Satellite as core and access networks for B5G,” IEEE Communications Magazine: Articles,News,and Events of Interest to Communications Engineers, vol. 60, no. 4, pp. 58–64, 2022.
    [21]
    M. Handley, “Delay is not an option: Low latency routing in space,” in Proc. 17th ACM Workshop on Hot Topics in Networks, Redmond, USA, 2018, pp. 85–91.
    [22]
    G. Giuliari, T. Klenze, M. Legner, D. Basin, A. Perrig, and A. Singla, “Internet backbones in space,” ACM SIGCOMM Computer Communication Review, vol. 50, no. 1, pp. 25–37, Jan. 2020. doi: 10.1145/3390251.3390256
    [23]
    N. Pachler, I. del Portillo, E. F. Crawley, and B. G. Cameron, “An updated comparison of four low earth orbit satellite constellation systems to provide global broadband,” in Proc. IEEE Int. Conf. Communications Workshops, Montreal, Canada, 2021, pp. 1–7.
    [24]
    D. Bhattacherjee, W. Aqeel, I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laughlin, B. Maggs, and A. Singla, “Gearing up for the 21st century space race,” in Proc. 17th ACM Workshop Hot Topics in Networks, Redmond, USA, 2018, pp. 113–119.
    [25]
    N. Cheng, W. Quan, W. S. Shi, H. Q. Wu, Q. Ye, H. B. Zhou, W. H. Zhuang, X. M. Shen, and B. Bai, “A comprehensive simulation platform for space-air-ground integrated network,” IEEE Wireless Commun., vol. 27, no. 1, pp. 178–185, Feb. 2020. doi: 10.1109/MWC.001.1900072
    [26]
    Q. Chen, G. Giambene, L. Yang, C. G. Fan, and X. Q. Chen, “Analysis of inter-satellite link paths for LEO mega-constellation networks,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2743–2755, Mar. 2021. doi: 10.1109/TVT.2021.3058126
    [27]
    S. Kassing, D. Bhattacherjee, A. B. Aguas, J. E. Saethre, and A. Singla, “Exploring the “internet from space” with Hypatia,” in Proc. ACM Internet Measurement Conf., New York, NY, USA: ACM, 2020, pp. 214–229.
    [28]
    Z. Q. Lai, H. W. Li, and J. H. Li, “StarPerf: Characterizing network performance for emerging mega-constellations,” in Proc. IEEE 28th Int. Conf. Network Protocols, Madrid, Spain, 2020, pp. 1–11.
    [29]
    X. J. Zhang, L. N. Zhu, T. Li, Y. X. Xia, and W. H. Zhuang, “Multiple-user transmission in space information networks: Architecture and key techniques,” IEEE Wireless Commun., vol. 26, no. 2, pp. 17–23, Apr. 2019. doi: 10.1109/MWC.2019.1800274
    [30]
    H. Q. Wu, J. Y. Chen, C. H. Zhou, W. S. Shi, N. Cheng, W. C. Xu, W. H. Zhuang, and X. S. Shen, “Resource management in space-air-ground integrated vehicular networks: SDN control and AI algorithm design,” IEEE Wireless Commun., vol. 27, no. 6, pp. 52–60, Dec. 2020. doi: 10.1109/MWC.001.2000130
    [31]
    N. Cheng, J. C. He, Z. S. Yin, C. H. Zhou, H. Q. Wu, F. Lyu, H. B. Zhou, and X. M. Shen, “6G service-oriented space-air-ground integrated network: A survey,” Chin. J. Aeronaut., vol. 35, no. 9, pp. 1–18, Sept. 2022. doi: 10.1016/j.cja.2021.12.013
    [32]
    N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. H. Zhuang, and X. S. Shen, “Software defined space-air-ground integrated vehicular networks: Challenges and solutions,” IEEE Commun. Mag., vol. 55, no. 7, pp. 101–109, Jul. 2017. doi: 10.1109/MCOM.2017.1601156
    [33]
    L. Wang, R. Iida, and A. M. Wyglinski, “Vehicular network simulation environment via discrete event system modeling,” IEEE Access, vol. 7, pp. 87246–87264, Jun. 2019. doi: 10.1109/ACCESS.2019.2922766
    [34]
    M. Mezzavilla, M. L. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, and M. Zorzi, “End-to-end simulation of 5G mmwave networks,” IEEE Commun. Surv. Tut., vol. 20, no. 3, pp. 2237–2263, 2018. doi: 10.1109/COMST.2018.2828880
    [35]
    M. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Intrusion detection system for PS-Poll DoS attack in 802.11 networks using real time discrete event system,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 792–808, Oct. 2017. doi: 10.1109/JAS.2016.7510178
    [36]
    X. X. Qi, B. Zhang, Z. L. Qiu, and L. Zheng, “Using inter-mesh links to reduce end-to-end delay in walker delta constellations,” IEEE Commun. Lett., vol. 25, no. 9, pp. 3070–3074, Sept. 2021. doi: 10.1109/LCOMM.2021.3095227
    [37]
    Y. T. Su, Y. Q. Liu, Y. Q. Zhou, J. H. Yuan, H. Cao, and J. L. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commun., vol. 26, no. 2, pp. 55–61, Apr. 2019. doi: 10.1109/MWC.2019.1800299
    [38]
    D. W. Yan, C. Liu, P. You, and S. W. Yong, “Multi-objective optimization design of extended walker constellation for global coverage services,” in Proc. 2nd IEEE Int. Conf. Computer and Communications, Chengdu, China, 2016, pp. 1309–1313.
    [39]
    O. Montenbruck, E. Gill, and F. H. Lutze, “Satellite orbits: Models, methods, and applications,” Appl. Mech. Rev., vol. 55, no. 2, pp. B27–B28, Mar. 2002. doi: 10.1115/1.1451162
    [40]
    R. K. Sharma, “Analytical short-term orbit predictions with J3 and J4 in terms of KS elements,” Celest. Mech. Dyn. Astr., vol. 56, no. 4, pp. 503–521, 1993. doi: 10.1007/BF00696183
    [41]
    D. Wei and C. Y. Zhao, “Analysis on the accuracy of the SGP4/SDP4 model,” Acta Astron. Sinica, vol. 50, no. 3, pp. 332–339, Jul. 2009.
    [42]
    A. U. Chaudhry and H. Yanikomeroglu, “Laser intersatellite links in a starlink constellation: A classification and analysis,” IEEE Veh. Technol. Mag., vol. 16, no. 2, pp. 48–56, Jun. 2021. doi: 10.1109/MVT.2021.3063706
    [43]
    X. H. Jia, T. Lv, F. He, and H. J. Huang, “Collaborative data downloading by using inter-satellite links in LEO satellite networks,” IEEE Trans. Wireless Communications, vol. 16, no. 3, pp. 1523–1532, Mar. 2017. doi: 10.1109/TWC.2017.2647805
    [44]
    G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating LTE cellular systems: An open-pource framework,” IEEE Trans. Vehicular Technology, vol. 60, no. 2, pp. 498–513, Jun. 2011. doi: 10.1109/TVT.2010.2091660
    [45]
    M. Lacage and T. R. Henderson, “Yet another network simulator,” in Proc. Workshop on NS-2: The IP Network Simulator, New York, USA, 2006, pp. 12–22.
    [46]
    S. Papanastasiou, J. Mittag, E. G. Ström, and H. Hartenstein, “Bridging the gap between physical layer emulation and network simulation,” in Proc. IEEE Wireless Communication and Networking Conf., Sydney, Australia, 2010, pp. 1–6.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (879) PDF downloads(175) Cited by()

    Highlights

    • A systematic and extensible simulation framework for mega-constellations is proposed
    • Modules of topology, network, discrete event and visualization are newly designed
    • This is the first trial to simulate such constellations of more than 10,000 satellites
    • The topology characteristic, transmission performance and network dynamics are evaluated

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return