A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 10 Issue 1
Jan.  2023

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 64, TOP 7
Turn off MathJax
Article Contents
X. Tian, W. Zhang, D. Yu, and J. Y. Ma, “Sparse tensor prior for hyperspectral, multispectral, and panchromatic image fusion,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 284–286, Jan. 2023. doi: 10.1109/JAS.2022.106013
Citation: X. Tian, W. Zhang, D. Yu, and J. Y. Ma, “Sparse tensor prior for hyperspectral, multispectral, and panchromatic image fusion,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 1, pp. 284–286, Jan. 2023. doi: 10.1109/JAS.2022.106013

Sparse Tensor Prior for Hyperspectral, Multispectral, and Panchromatic Image Fusion

doi: 10.1109/JAS.2022.106013
More Information
  • loading
  • [1]
    H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion meets deep learning: A survey and perspective,” Inf. Fusion, vol. 76, pp. 323–336, 2021. doi: 10.1016/j.inffus.2021.06.008
    [2]
    T. Zhou, M. Chen, and J. Zou, “Reinforcement learning based data fusion method for multi-sensors,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 6, pp. 1489–1497, 2020. doi: 10.1109/JAS.2020.1003180
    [3]
    M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, “Hypersharpening: A first approach on SIM-GA data,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 3008–3024, 2015. doi: 10.1109/JSTARS.2015.2440092
    [4]
    S. Li, R. Dian, L. Fang, and J. M. Bioucas-Dias, “Fusing hyperspectral and multispectral images via coupled sparse tensor factorization,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 4118–4130, 2018. doi: 10.1109/TIP.2018.2836307
    [5]
    R. Dian, S. Li, L. Fang, T. Lu, and J. M. Bioucas-Dias, “Nonlocal sparse tensor factorization for semiblind hyperspectral and multispectral image fusion,” IEEE Trans. Cybernetics, vol. 50, no. 10, pp. 4469–4480, 2019.
    [6]
    W. Dong, S. Xiao, J. Liang, and J. Qu, “Fusion of hyperspectral and panchromatic images using structure tensor and matting model,” Neurocomputing, vol. 399, pp. 237–246, 2020. doi: 10.1016/j.neucom.2020.02.050
    [7]
    R. Arablouei, “Fusing multiple multiband images,” J. Imaging, vol. 4, no. 10, p. 118, 2018. doi: 10.3390/jimaging4100118
    [8]
    X. Tian, W. Zhang, Y. Chen, Z. Wang, and J. Ma, “HyperFusion: A computational approach for hyperspectral, multispectral, and panchromatic image fusion,” IEEE Trans. Geosci. Remote Sens., vol. 60, p. 5518216, 2022.
    [9]
    Y. Peng, W. Li, X. Luo, and J. Du, “Hyperspectral image superresolution using global gradient sparse and nonlocal low-rank tensor decomposition with hyper-laplacian prior,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 14, pp. 5453–5469, 2021. doi: 10.1109/JSTARS.2021.3076170
    [10]
    M. Simoes, J. Bioucas-Dias, L. B. Almeida, and J. Chanussot, “A convex formulation for hyperspectral image superresolution via subspace-based regularization,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3373–3388, 2014.
    [11]
    R. Dian, S. Li, and L. Fang, “Learning a low tensor-train rank representation for hyperspectral image super-resolution,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 9, pp. 2672–2683, 2019. doi: 10.1109/TNNLS.2018.2885616
    [12]
    B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution pansharpening through multivariate regression of MS + PAN data,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, 2007. doi: 10.1109/TGRS.2007.901007
    [13]
    G. Vivone, “Robust band-dependent spatial-detail approaches for panchromatic sharpening,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6421–6433, 2019. doi: 10.1109/TGRS.2019.2906073
    [14]
    J. Yang, Y. Zhao, C. Yi, and J. C.-W. Chan, “No-reference hyperspectral image quality assessment via quality-sensitive features learning,” Remote Sens., vol. 9, no. 4, p. 305, 2017. doi: 10.3390/rs9040305
    [15]
    H. Wu, X. Luo, and M. Zhou, “Advancing non-negative latent factorization of tensors with diversified regularizations schemes,” IEEE Trans. Services Computing, vol. 15, no. 3, pp. 1334–1344, 2022. doi: 10.1109/TSC.2020.2988760

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (104) PDF downloads(13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return