A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 6
Jun.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
Y. Yuan, L. Y. Shi, and W. L. He, “A linear algorithm for quantized event-triggered optimization over directed networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1095–1098, Jun. 2022. doi: 10.1109/JAS.2022.105614
Citation: Y. Yuan, L. Y. Shi, and W. L. He, “A linear algorithm for quantized event-triggered optimization over directed networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1095–1098, Jun. 2022. doi: 10.1109/JAS.2022.105614

A Linear Algorithm for Quantized Event-Triggered Optimization Over Directed Networks

doi: 10.1109/JAS.2022.105614
More Information
  • loading
  • [1]
    T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annu. Rev. Control, vol. 47, pp. 278–305, Jan. 2019. doi: 10.1016/j.arcontrol.2019.05.006
    [2]
    A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multiagent optimization,” IEEE Trans. Autom. Contr., vol. 54, no. 1, pp. 48–61, Jan. 2009. doi: 10.1109/TAC.2008.2009515
    [3]
    X. Ren, D. Li, Y. Xi, and H. Shao, “Distributed subgradient algorithm for multi-agent optimization with dynamic stepsize,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 8, pp. 1451–1464, Aug. 2021. doi: 10.1109/JAS.2021.1003904
    [4]
    A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp. 2597–2633, Jan. 2017. doi: 10.1137/16M1084316
    [5]
    J. Lu, C. Y. Tang, R. Regier, and T. D. Bow, “Gossip algorithms for convex consensus optimization over networks,” IEEE Trans. Autom. Contr., vol. 56, no. 12, pp. 2917–2923, Dec. 2011. doi: 10.1109/TAC.2011.2160020
    [6]
    J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case,” IEEE Trans. Autom. Contr., vol. 57, no. 9, pp. 2348–2354, Sep. 2012. doi: 10.1109/TAC.2012.2184199
    [7]
    W. Chen and W. Ren, “Event-triggered zero-gradient-sum distributed consensus optimization over directed networks,” Automatica, vol. 65, pp. 90–97, Mar. 2016. doi: 10.1016/j.automatica.2015.11.015
    [8]
    W. He, T. Luo, Y. Tang, W. Du, Y.-C. Tian, and F. Qian, “Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy,” IEEE Trans. Neural Netw. Learning Syst., vol. 31, no. 9, pp. 3334–3345, Sep. 2020. doi: 10.1109/TNNLS.2019.2943548
    [9]
    T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with limited communication data rate,” IEEE Trans. Autom. Contr., vol. 56, no. 2, pp. 279–292, Feb. 2011. doi: 10.1109/TAC.2010.2052384
    [10]
    P. Yi and Y. Hong, “Quantized subgradient algorithm and data-rate analysis for distributed optimization,” IEEE Trans. Control Netw. Syst., vol. 1, no. 4, pp. 380–392, Dec. 2014. doi: 10.1109/TCNS.2014.2357513
    [11]
    C. Huang, H. Li, D. Xia, and L. Xiao, “Quantized subgradient algorithm with limited bandwidth communications for solving distributed optimization over general directed multi-agent networks,” Neurocomputing, vol. 185, pp. 153–162, Apr. 2016. doi: 10.1016/j.neucom.2015.12.043
    [12]
    H. Li, C. Huang, Z. Wang, G. Chen, and H. G. Ahmad Umar, “Computation-efficient distributed algorithm for convex optimization over time-varying networks with limited bandwidth communication,” IEEE Trans. Signal Process., vol. 6, pp. 140–151, 2020.
    [13]
    Y. Kajiyama, N. Hayashi, and S. Takai, “Linear convergence of consensus-based quantized optimization for smooth and strongly convex cost functions,” IEEE Trans. Autom. Contr., vol. 66, no. 3, pp. 1254–1261, Mar. 2021. doi: 10.1109/TAC.2020.2989281
    [14]
    V. Shnayder, M. Hempstead, B.-R. Chen, G. W. Allen, and M. Welsh, “Simulating the power consumption of large-scale sensor network applications, ” in Proc. 2nd Int. Conf. Embedded Networked Sensor Systems, New York, USA, Nov. 2004, pp. 188–200.
    [15]
    W. He, B. Xu, Q.-L. Han, and F. Qian, “Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 2996–3008, Jul. 2020. doi: 10.1109/TCYB.2019.2920093
    [16]
    X. Ge, S. Xiao, Q.-L. Han, X.-M. Zhang, and D. Ding, “Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hoc networks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 1, pp. 31–46, Jan. 2022. doi: 10.1109/JAS.2021.1004060
    [17]
    Y. Kajiyama, N. Hayashi, and S. Takai, “Distributed subgradient method with edge-based event-triggered communication,” IEEE Trans. Autom. Contr., vol. 63, no. 7, pp. 2248–2255, Jul. 2018. doi: 10.1109/TAC.2018.2800760
    [18]
    C. Liu, H. Li, Y. Shi, and D. Xu, “Distributed event-triggered gradient method for constrained convex minimization,” IEEE Trans. Autom. Contr., vol. 65, no. 2, pp. 778–785, Feb. 2020. doi: 10.1109/TAC.2019.2916985
    [19]
    H. Li, S. Liu, Y. C. Soh, and L. Xie, “Event-triggered communication and data rate constraint for distributed optimization of multiagent systems,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 48, no. 11, pp. 1908–1919, Nov. 2018. doi: 10.1109/TSMC.2017.2694323
    [20]
    N. Hayashi, K. Ishikawa, and S. Takai, “Distributed subgradient method for constrained convex optimization with quantized and event-triggered communication,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E103-A, no. 2, pp. 428–434, Feb. 2020. doi: 10.1587/transfun.2019MAP0007
    [21]
    S. Liu, L. Xie, and D. E. Quevedo, “Event-triggered quantized communication-based distributed convex optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 167–178, Mar. 2018. doi: 10.1109/TCNS.2016.2585305
    [22]
    W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for decentralized consensus optimization,” SIAM J. Optim., vol. 25, no. 2, pp. 944–966, Jan. 2015. doi: 10.1137/14096668X

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (142) PDF downloads(50) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return