A journal of IEEE and CAA , publishes high-quality papers in English on original theoretical/experimental research and development in all areas of automation
Volume 9 Issue 6
Jun.  2022

IEEE/CAA Journal of Automatica Sinica

  • JCR Impact Factor: 7.847, Top 10% (SCI Q1)
    CiteScore: 13.0, Top 5% (Q1)
    Google Scholar h5-index: 51, TOP 8
Turn off MathJax
Article Contents
C. Liu, B. Jiang, X. F. Wang, H. L. Yang, and  S. R. Xie,  “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419
Citation: C. Liu, B. Jiang, X. F. Wang, H. L. Yang, and  S. R. Xie,  “Distributed fault-tolerant consensus tracking of multi-agent systems under cyber-attacks,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 6, pp. 1037–1048, Jun. 2022. doi: 10.1109/JAS.2022.105419

Distributed Fault-Tolerant Consensus Tracking of Multi-Agent Systems Under Cyber-Attacks

doi: 10.1109/JAS.2022.105419
Funds:  This work was supported by the National Key R&D Program of China (2018AAA0102804), National Natural Science Foundation of China (62020106003, 62103250, 61773201), Fundamental Research Funds for the Central Universities (NC2020002, NP2020103), Shanghai Sailing Program (21YF1414000)
More Information
  • This paper investigates the distributed fault-tolerant consensus tracking problem of nonlinear multi-agent systems with general incipient and abrupt time-varying actuator faults under cyber-attacks. First, a decentralized unknown input observer is established to estimate relative states and actuator faults. Second, the estimated and output neighboring information is combined with distributed fault-tolerant consensus tracking controllers. Criteria of reaching leader-following exponential consensus tracking of multi-agent systems under both connectivity-maintained and connectivity-mixed attacks are derived with average dwelling time, attack frequency, and attack activation rate technique, respectively. Simulation example verifies the effectiveness of the fault-tolerant consensus tracking algorithm.


  • loading
  • [1]
    H. B. Du, Z. Q. Chen, and G. H. Wen, “Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft,” J. Guid. Control Dyn., vol. 39, no. 4, pp. 941–948, 2016.
    Q. S. Wang, D. Huang, Z. S. Duan, and J. Y. Wang, “Consensus tracking control with transient performance improvement for a group of unmanned aerial vehicles subject to faults and parameter uncertainty,” Int. J. Control, vol. 92, no. 4, pp. 796–815, 2019. doi: 10.1080/00207179.2017.1370555
    W. Wang, J. S. Huang, C. Y. Wen, and H. J. Fan, “Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, 2014. doi: 10.1016/j.automatica.2014.02.028
    J. H. Qin, Q. C. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent systems: A brief survey,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4972–4983, 2017. doi: 10.1109/TIE.2016.2636810
    M. E. Valcher and I. Zorzan, “On the consensus of homogeneous multi-agent systems with arbitrarily switching topology,” Automatica, vol. 84, pp. 79–85, 2017. doi: 10.1016/j.automatica.2017.07.011
    Z. Y. Zuo, B. L. Tian, M. Defoort, and Z. T. Ding, “Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics,” IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 563–570, 2018. doi: 10.1109/TAC.2017.2729502
    B. Cheng, X. K. Wang, and Z. K. Li, “Event-triggered consensus of homogeneous and heterogeneous multiagent systems with jointly connected switching topologies,” IEEE Trans. Cybern., vol. 49, no. 12, pp. 4421–4430, 2019. doi: 10.1109/TCYB.2018.2864974
    M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems,” IEEE Trans. Neural Netw. Learn. Syst., 2021. DOI: 10.1109/TNNLS.2021.3070824
    W. L. He, Z. K. Mo, Q. L. Han, and F. Qian, “Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 5, pp. 1326–1334, 2020.
    P. Cheng, Z. Y. Yang, J. M. Chen, et al., “An event-based stealthy attack on remote state estimation,” IEEE Trans. Autom. Control, vol. 65, no. 10, pp. 4348–4355, 2020. doi: 10.1109/TAC.2019.2956021
    M. L. Lv, W. W. Yu, J. D. Cao, and S. Baldi, “Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control,” IEEE Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.3028171
    S. Wu, K. M. Ding, P. Cheng, and L. Shi, “Optimal scheduling of multiple sensors over lossy and bandwidth limited channels,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1188–1200, 2020. doi: 10.1109/TCNS.2020.2966671
    D. Ye and X. Yang, “Distributed event-triggered consensus for nonlinear multi-agent systems subject to cyber attacks,” Inf. Sci., vol. 473, pp. 178–189, 2019. doi: 10.1016/j.ins.2018.09.030
    D. R. Ding, Z. D. Wang, D. W. C. Ho, and G. L. Wei, “Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 1936–1947, 2017. doi: 10.1109/TCYB.2016.2582802
    K. F. E. Tsang, M. Y. Huang, K. H. Johansson, and L. Shi, “Sparse linear injection attack on multi-agent consensus control systems,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 665–670, 2021. doi: 10.1109/LCSYS.2020.3004920
    D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, 2021. doi: 10.1109/JAS.2021.1003820
    Y. Xu, M. Fang, Z. G. Wu, et al., “Input-based event-triggering consensus of multiagent systems under denial-of-service attacks,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 50, no. 4, pp. 1455–1464, 2020. doi: 10.1109/TSMC.2018.2875250
    W. M. Fu, J. H. Qin, Y. Shi, et al., “Resilient consensus of discrete-time complex cyber-physical networks under deception attacks,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4868–4877, 2020. doi: 10.1109/TII.2019.2933596
    Y. Yang, H. W. Xu, and D. Yue, “Observer-based distributed secure consensus control of a class of linear multi-agent systems subject to random attacks,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 66, no. 8, pp. 3089–3099, 2019. doi: 10.1109/TCSI.2019.2904747
    Z. Feng, G. Q. Hu, and G. H. Wen, “Distributed consensus tracking for multi-agent systems under two types of attacks,” Int. J. Robust Nonlinear Control, vol. 26, no. 5, pp. 896–918, 2016. doi: 10.1002/rnc.3342
    H. Yang, Q. L. Han, X. H. Ge, et al., “Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies,” IEEE Trans. Ind. Inform., vol. 16, no. 1, pp. 4–17, 2020. doi: 10.1109/TII.2019.2945004
    D. Ye, X. G. Zhao, and B. Cao, “Distributed adaptive fault-tolerant consensus tracking of multi-agent systems against time-varying actuator faults,” IET Contr. Theory Appl., vol. 10, no. 5, pp. 554–563, 2016. doi: 10.1049/iet-cta.2015.0790
    Z. Q. Zuo, J. Zhang, and Y. J. Wang, “Adaptive fault-tolerant tracking control for linear and Lipchitz nonlinear multi-agent systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3923–3931, 2015.
    C. Deng, W. N. Gao, and W. W. Che, “Distributed adaptive fault-tolerant output regulation of heterogeneous multi-agent systems with coupling uncertainties and actuator faults,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 4, pp. 1098–1106, 2020. doi: 10.1109/JAS.2020.1003258
    X. Z. Jin, S. F. Wang, J. H. Qin, et al., “Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 65, no. 7, pp. 2243–2255, 2018. doi: 10.1109/TCSI.2017.2782729
    C. Liu, B. Jiang, K. Zhang, and R. J. Patton, “Hierarchical structure-based fault estimation and fault-tolerant control for multiagent systems,” IEEE Trans. Control Netw. Syst., vol. 6, no. 2, pp. 586–597, 2019. doi: 10.1109/TCNS.2018.2860460
    D. Ye, M. M. Chen, and H. J. Yang, “Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 757–767, 2019. doi: 10.1109/TCYB.2017.2782731
    X. Wang and G. H. Yang, “Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1921–1930, 2020. doi: 10.1109/TCYB.2019.2901542
    Y. M. Wu, Z. S. Wang, S. B. Ding, and H. G. Zhang, “Leader-follower consensus of multi-agent systems in directed networks with actuator faults,” Neurocomputing, vol. 275, pp. 1177–1185, 2018. doi: 10.1016/j.neucom.2017.09.066
    X. X. Hua, D. R. Huang, and S. H. Guo, “Extended state observer based on ADRC of linear system with incipient fault,” Int. J. Control Autom. Syst., vol. 18, pp. 1425–1424, 2020. doi: 10.1007/s12555-019-0052-2
    Y. M. Wu and X. X. He, “Secure consensus control for multi-agent systems with attacks and communication delays,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 136–142, 2017. doi: 10.1109/JAS.2016.7510010
    C. Deng and C. Y. Wen, “Distributed resilient observer-based fault-tolerant control for heterogeneous multi-agent systems under actuator faults and DoS attacks,” IEEE Trans. Control Netw. Syst., vol. 7, no. 3, pp. 1308–1318, 2020. doi: 10.1109/TCNS.2020.2972601
    L. Zhao and G. H. Yang, “Adaptive fault-tolerant control for nonlinear multi-agent systems with DoS attacks,” Inf. Sci., vol. 526, pp. 39–53, 2020. doi: 10.1016/j.ins.2020.03.083
    L. Zhao and G. H. Yang, “Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks,” J. Frankl. Inst., vol. 357, no. 6, pp. 3419–3433, 2020. doi: 10.1016/j.jfranklin.2019.12.032
    P. Yu, L. Ding, Z. W. Liu, and Z. H. Guan, “A distributed event-triggered transmission strategy for exponential consensus of general linear multi-agent systems with directed topology,” J. Frankl. Inst., vol. 352, no. 12, pp. 5866–5881, 2015. doi: 10.1016/j.jfranklin.2015.10.014
    Q. Song, F. Liu, J. D. Cao, and W. W. Yu, “Pinning-controllability analysis of complex networks: An M-matrix approach,” IEEE Trans. Circuits Syst. I-Regul. Pap., vol. 59, no. 11, pp. 2692–2701, 2012. doi: 10.1109/TCSI.2012.2190573
    C. Peng, J. Zhang, and Q. L. Han, “Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme,” IEEE Trans. Syst. Man Cybern. -Syst., vol. 49, no. 3, pp. 589–599, 2019. doi: 10.1109/TSMC.2018.2814572


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (441) PDF downloads(84) Cited by()


    • This study attempts to combine network anti-attack and fault-tolerant control technologies effectively
    • It is a brand-new attempt to address the different types of constraints of self-dynamics in physical hierarchy and maintained/paralyzed links in networked hierarchy
    • A novel control structure is proposed with the effective combination of local fault/state estimation in decentralized FE and adjacent output information in distributed FCTC


    DownLoad:  Full-Size Img  PowerPoint